Search Results
144 results found with an empty search
- From the Editors-in-Chief | OmniSci Magazine
< Back to Issue 4 From the Editors-in-Chief by Caitlin Kane, Rachel Ko, Patrick Grave, Yvette Marris 1 July 2023 Edited by the Committee Illustrated by Gemma van der Hurk Scirocco, summer sun, shimmering on the horizon. Salt-caked channels spiderweb your lips, scored by rivulets of sweat. Shifting, hissing sands sting your legs. You are the explorer, the adventurer, the scientist. A rusted spring, you heave forward, straining for each step, hauling empty waterskins. ----- The lonely deserts of science provide fertile ground for mirages. An optical phenomenon that appears to show lakes in the distance, the mirage has long been a metaphor for foolhardy hopes and desperate quests. The allure of a sparkling oasis just over the horizon, however, is undeniable. The practice of science involves both kinds of stories. Some scientists set a distant goal and reach it — perhaps they are lucky, perhaps they have exactly the right skills. Other scientists yearn to crack a certain problem but never quite get there. In this issue of OmniSci Magazine, we chose to explore this quest for the unknown that may be bold, unlucky, or even foolhardy: chasing the ‘Mirage’. Each article was written entirely by a student, edited by students, and is accompanied by an illustration that was created by a student. We, as a magazine, exist to provide university students a place to develop their science communication skills and share their work. If there’s a piece you enjoy, feel free to leave a comment or send us some feedback – we love to know that our work means something to the wider world. We’d like to thank all our contributors — our writers, designers, editors, and committee — who have each invested countless hours into crafting an issue that we are all incredibly proud of. We’d also like to thank you, our readers; we are incredibly grateful that people want to read student pieces and learn little bits from the work. That’s enough talking from us until next issue. Go and read some fantastic student writing! Previous article Next article back to MIRAGE
- Climate Change, Vaccines & Lockdowns | OmniSci Magazine
How should scientific research and political legislation interact, and what role should they play in public discourse? Climate Change, Vaccines & Lockdowns: How and Why Science Has Become a Polarising Political Debate By Mia Horsfall In light of the compounding climate crisis and the COVID-19 pandemic, the discussion around how we implement scientific research into political realms is growing, and with it, the controversy. But perhaps the debate surrounding such contentious issues reveals more about how we communicate our science than the quality of the science itself. Edited by Yen Sim & Andrew Lim Issue 1: September 24, 2021 Illustration by Janna Dingle The degree to which public rhetoric morphs and formulates enactment of scientific research in topics such as climate change, energy politics and vaccinations has become increasingly evident in recent years, as evidenced by polarising public debates surrounding the COVID-19 pandemic and the ‘School Strike’ movements. The ‘apocalyptic narratives’ employed by climate protesters are often combated with condescension and intellectual elitism propagated by political figures, resulting in a remarkably detached exchange of dialogue and a good deal of reticence but an overwhelming lack of progress. Reluctance to accept COVID-19 vaccinations and lockdowns is indicative more of a dogmatic belief in exertion of liberty at all costs rather than a measured comprehension of the implications of such decisions. Likewise, discussions surrounding implementation of nuclear power showcase the disconnect between scientific research and economic policy making, resulting in conflict and frustration as the two struggle to reconcile. The role of science in political, legal and social spheres is contingent upon public discourses surrounding its relevance and remains largely subservient to public opinion. Scientific matters should increasingly, “be studied in relation to how they impact social structures,” (Holmberg & Alvinius, 2020) and it is in this way we can hope to understand the dimorphic nature of research and its intersection with political and social implications. To understand how scientific discourse shifts from a research-centric discussion to a tool to uphold political ideology, it is crucial to deconstruct the rhetoric utilised by opposing sides of the climate debate to advance support for their cause. Examination of the discourse on different sides of the ‘School Strike’ movement ironically reveals that both sides stem from the same source: an analysis of the authority of youth in political spheres. The succinct, punchy statements used to endorse student climate advocacy relish in the youth of the protesters – “you’ll die of old age, we’ll die of climate change”, “I’d be in school if the earth was cool”, “it’s getting hot in here so take off all your coals,'' (Kamarck, 2019). By focusing the targets of the movement on ‘abstract’ actors such as legal, political and economic ecosystems, the movement distances itself from the accepted scientific consensus and focuses on the issue of the mobilisation of policymakers in climate action. These ‘apocalyptic narratives’ do not question the authority of the science communicated, instead hinging their argument upon the challenge of inciting political change from a youth-driven movement. Their narrative relies on the distinct lack of political influence historically held by youth, and satirises the predicted response of politicians such as the then Federal Minister for Education Dan Tehan who asserted that the strikes were orchestrated by professional activists and children were missing valuable class time (Perinotto & Johnston, 2019). The difficulty then posed is that formulating the protester’s messages from a place of pathos drives the argument further away from the scientifically enforced urgency and enables politically interested individuals to divert the argument from one of scientific claim to one about challenging the authority of youth to speak with regards to politics. Prime Minister Scott Morrison’s suggestion to the school strikers to, “get a bit of context and perspective,” (Perinotto & Johnston, 2019), is saturated not only with elitism but an enforcement of the notion of political superiority, that some knowledge remains incomprehensible to the public sphere and is privy only to the select few. It remains, then, that the biggest obstacle in the school strikers’ position is the unification of scientific authorities, politicians and the emotionally driven and passionate youth. But perhaps the politicisation of climate change has more to do with political dichotomisation than the controversy of the science itself. Chinn, Hart and Soroka assert that, “beliefs about climate change have become a marker of partisan affiliation,” (Chinn, Hart, & Soroka 2020), and this is not the only realm of scientific contention to become politicised. Opposition to government-mandated lockdowns, vaccinations and regulations of genetic modification of food all stem from one crucial point of difference in belief; the degree to which the government should have the ability to regulate everyday happenings of our lives. This is not a new phenomenon. This key difference is at the heart of bipartisanship and is the central debate in almost every political issue. So perhaps the issue is not inherently the politicisation of scientific discourse, as implementation of policy in reference to new scientific findings will inevitably become politicised, but the monotonous rhetoric employed by the left and the right. As Kamarck upholds, “it is the lack of trust in government that may be one of the foundational barriers to effective environmental action,” (Kamarck, 2019). If we take the intent of science as being to seek a degree of objective insight about the nature of the world and its happenings, it will naturally lead to division in political climates saturated by individual motivation and greed. A 2020 American study utilised word frequency analysis software of articles from four major newspapers (New York Times, Chicago Tribune, Los Angeles Times and The Washington Post) to quantitatively determine the number of times scientists’ names were mentioned in regard to phrases such as ‘global warming’ or ‘fracking’, in comparison to politicians (see Figure 1 & 2). Whilst this understandably has to do with matters of climate policy making and does not in and of itself convey an image of the politicised nature of the debate, it does provide significant insight into the shifting obstacles faced in attaining climate action. What provides significantly greater insight is an analysis conducted of the language variance within the media of the parties across the years. From this data, we see that whilst the difference in rhetoric across the two major parties is significant, it is also largely unchanging. It is this divide in political narratives that fosters a sense of distrust and scepticism amongst individuals. Where more left-leaning parties emphasise the social inequalities that will be expounded upon as the consequences of climate change compound, conservatively leaning parties perpetuate the notion that climate action stipulates a greater control of the government on energy politics and enables less agency to the individual. In their narrative, the economic consequences outweigh the benefit of transition to renewable energy systems. From such polarised discourse, it becomes apparent that the way science operates within social spheres has more to do with pre-existing flaws in systemic structures than the quality of the science itself. Figure 1 (2) Figure 2 (2) Of course, a key consideration of how political and activist narratives impact the science that is upheld is through the medialisation of science. ‘Medialisation’ is the concept that science and media should engage in a reciprocal relationship, where scientists use media for broader impact and to advocate for more public funding while the media relies on interest to propagate scientific breakthroughs (Scheufele, 2014). The utility of science comes only from what is accepted and implemented in public opinion, hence scientific practice continues to grow into these frameworks, particularly in discussions around climate change or gene editing technologies. Ultimately, as Scheufele asserts, “the production of reliable knowledge about the natural world has always been a social and political endeavour,” (Scheufele, 2014), one that the media capitalises on to make as economical as possible. That is, it is in most media outlets’ interest to frame politics and science as being at odds with each other as, “coverage increases dramatically if and when issues become engulfed in political or societal controversy,” (Scheufele, 2014). Whilst science cannot and should never be removed from subjugation to moral scrutiny, discourse remains dominated by discussion surrounding the legitimacy of those advocating for one side or the other, rather than the quality of the science itself. Of course bias exists in media outlets , but is propagated by the bias of the consumers, as a consequence of ‘motivated reasoning’. That is, individuals subconsciously place more weight upon information that confirms pre-existing viewpoints and divert more energy into finding flawed reasoning for all that does not concur with preconceived perceptions. The result is a positive feedback loop that is hard to curtail. Individuals form opinions from information they are exposed to in the media, subconsciously seek further information to fortify their initial opinion, leading to opinion reinforcement. In this way, microcosmic ‘mediated realities’ form, each individual inhabiting a vastly different scientific landscape than those of the opposite opinion. In these realities, it is the implications of policy making rather than objective reasoning about the science itself that prevails, resulting in scientific breakthrough perpetually existing subserviently to the opinion of the people, irrespective of whether that opinion is informed. This consequently influences what scientific research is allocated what proportion of public funding, inadvertently providing a quantitative discriminator in what ‘sides’ are upheld in the media. So, what role should science play in political discourse? How do we ensure a mediation of scientific advice and democratic decision making? Darrin Durant of the University of Melbourne unpacks this question, deliberating on whether science should assume a ‘servant’ or ‘partner’ role when it exists within public discourse. Durant argues that if science were to assume the role of a servant (acting in an advisory position to politics), public perception would descend into a degree of populism, overrun by conspiracists and anti-pluralists. Rather, if it were to exist as a ‘partner’, legitimising the authority held by scientific figures, a degree of objectivity could be applied to an otherwise dynamic and transient political landscape. It is only by bridging the political dichotomy that prevails in media and social spheres that scientific discourse will cease to fall prey to political weaponization, existing as a level-ground for rational debate rather than morphing in accordance with ideology. References: Alvinius, A & Holmberg, A. (2020). Children’s protest in relation to the climate emergency: A qualitative study on a new form of resistance promoting political and social change. SAGE Journals. https://journals.sagepub.com/doi/full/10.1177/0907568219879970. Chinn, S., Hart, P., & Soroka, S. (2020). Politicization and Polarization in Climate Change News Content, 1985-2017. SAGE Journals. https://journals.sagepub.com/doi/full/10.1177/1075547019900290. Durant, D. (2018). Servant or partner? The role of expertise and knowledge in democracy. The Conversation.https://theconversation.com/servant-or-partner-the-role-of-expertise-and-knowledge-in-democracy-92026. Durant, D. (2021). Who are you calling 'anti-science'? How science serves social and political agendas. The Conversation. https://theconversation.com/who-are-you-calling-anti-science-how-science-serves-social-and-political-agendas-74755 . Feldman, H. (2020). A rhetorical perspective on youth environmental activism. Jcom.sissa.it. Retrieved 11 September 2021, from https://jcom.sissa.it/sites/default/files/documents/JCOM_1906_2020_C07.pdf . Kamarck, E. (2019). The challenging politics of climate change. Brookings. https://www.brookings.edu/research/the-challenging-politics-of-climate-change/ . Perinotto, T., & Johnston, P. (2019). What our leaders said about the school climate change strike. The Fifth Estate. https://thefifthestate.com.au/urbanism/climate-change-news/what-our-leaders-said-about-the-school-climate-change-strike/ . Scheufele, D. (2014). Science communication as political communication. Pnas.org. https://www.pnas.org/content/pnas/111/Supplement_4/13585.full.pdf. The best climate strike signs from around the globe – in pictures. The Guardian. (2021). https://www.theguardian.com/us-news/gallery/2019/sep/20/the-best-climate-strike-signs-from-around-the-globe-in-pictures . Image reference - https://journals.sagepub.com/doi/full/10.1177/1075547019900290
- Talking to Yourself: The Biology of Hallucinations | OmniSci Magazine
< Back to Issue 4 Talking to Yourself: The Biology of Hallucinations by Lily McCann 1 July 2023 Edited by Arwen Nguyen-Ngo and Yasmin Potts Illustrated by Zhuominna Ma What is consciousness? No small question. To this day it hasn’t been entirely satisfied. Consider a conversation: There are voices from the outside, stimuli that talk to all the sensory receptors that we have. They pass on messages to our fingertips that we are touching something cold; they tell our eyes that we are seeing certain wavelengths of light; and they tell the cochlea of our ears what sounds we are hearing. The sensory circuits of our bodies bring these words from outside and turn them inward, presenting them to the centre of our consciousness: Here - this is what we are experiencing. This is what we are taking from the world outside. But already, at the base of this consciousness, an idea of the world has been established. The central experience of our mind is built upon prediction: we are constantly conjuring up an estimate of how the outside world will be. The ‘Predictive Processing’ model of consciousness states that it is the conversation between this predictive perception of the world and the feedback from our sensory experience that defines what it is to feel consciousness (1). In 1971, Nature published the conclusions of a study titled, ‘Preliminary Observations on Tickling Oneself’ (2). In this experiment, a device was used to compare the experience of being tickled by an experimenter to the experience of tickling oneself, and both were compared to the intermediate of passively following the experimenter’s arm as they tickled the participant. The study concluded that the action of tickling oneself produced no effect as the planned action of tickling cancelled out the sensation of being tickled; the lack of an action in the case of the experimenter tickling the subject’s hand, allowed for a full ‘tickle’ sensation. Interestingly, the third process of passively following the tickling action was rated at a level in between these two responses. This showed that it was not the action of tickling alone that cancelled out the sensation of the stimulus as tickling, but that a knowledge of the tickle, a prediction of it, were enough to reduce the effect. This experiment reflects the idea that it is not just our planned actions and our sensory perception that drive consciousness, but that it is prediction that has a core place in driving experience. For centuries, hallucinations have been recognised as distortions of our sense of being conscious in the world. In 1838, Esquirol wrote in his ‘Mental Maladies: A Treatise On Insanity’ that the experience of a hallucination is “a thorough conviction of the perception of a sensation, when no external object, suited to excite this sensation, has impressed the senses.” (3) Anything that distorts our ‘perception’ or ‘sensation’ can therefore give rise to a hallucination. This can occur in the context of infection, psychosis, delirium, use of certain drugs - and the aptly named ‘exploding head syndrome’. Contrary to popular opinion, hallucinations are not a feature of psychotic disorders alone. In fact, analysis has shown that no single aspect of schizophrenia-related hallucinations is specific to this disease (4). In 2000, the idea of the ‘Tickling’ study was elaborated with respect to hallucinations in an investigation comparing the experience of self-produced and externally implemented stimuli for those who both did and did not suffer from hallucinations. It was shown in this study that for participants with hallucinatory disorders, there was a breakdown in the ability to differentiate between stimuli produced externally and internally (5). This study is in line with a certain theory of hallucination purported by Frith, who suggests in his discussion of positive symptoms of schizophrenia that the foundation of hallucination is a “fault in the system which internally monitors and compares intentions and actions” (6). There is another interesting theory that describes hallucinations as memories released from suppression. The authors suggest that the hallucination itself is a cacophony of memory signals set loose, where normally they are shut out of our conscious mind. One study described auditory hallucinations in those with hearing loss as an “uninhibition syndrome”. They argued that in the cases studied, a lack of sensory auditory input seemed to “uninhibit neuronal groups storing auditory memory” (7). The brain is an incredibly complex organ and theories regarding consciousness and hallucinations abound. The question of greatest practical importance is what part of the process of hallucinations can we understand and therefore, what can be targeted when we are called to treat this system in a medical setting. Recent investigations have linked various molecules, receptors and genes to hallucinatory disorders or states, whilst imaging studies demonstrate networks and regions of the brain activated during hallucinations. Investigation of certain receptor-modulating drugs has revealed the place of certain molecules in delusion and sensation; and the association of certain genes to hallucination-prone phenotypes has established a genetic cause for susceptibilities to hallucination. This research yields molecular and genetic targets for therapies that can help reduce the burden of hallucinations on an individual. It is a remarkable faculty of our minds, the ability to create a world - or aspects of the world - for ourselves and convince our own consciousness that it is real. Hallucinations reveal the capacity of the human brain for imagination; they show that all we experience is indeed creative, merely restricted by what we see as truth. But the grounding fact of knowing what is real is essential to functioning in society. Losing the ability to check our own creative experience of consciousness is exceedingly frightening and disempowering. Anything that helps us to maintain the right balance of conversation between the experiences we create and those we feel allow us to maintain a sense of self in the world. Elucidating the biology behind these conversations and the effects of hallucination itself can bring us closer to a definition of consciousness. References Hohwy J, Seth A. Predictive processing as a systematic basis for identifying the neural correlates of consciousness. Philosophy and the Mind Sciences. 2020;1(2). 3. https://doi.org/10.33735/phimisci.2020.II.64 Weiskrantz L, Elliot J, Darlington C. Preliminary observations on tickling oneself. Nature. 1971 Apr 30. 230: 598–599 https://doi.org/10.1038/230598a0 Esquirol J. Mental maladies: A treatise on insanity. France: Wentworth Press; 2016 Waters F, Fernyhough C. Hallucinations: A systematic review of points of similarity and difference across diagnostic classes. National Library of Medicine. 2016 Nov 21. doi: 10.1093/schbul/sbw132 Blakemore S.J, Smith J, Steel R, Johnstone E.C. The perception of self-produced sensory stimuli in patients with auditory hallucinations and passivity experiences: Evidence for a breakdown in self-monitoring. Psychological Medicine. 2000 Oct 17. 30(5): 1131-9. https://doi.org/10.1017/S0033291799002676 Frith C. The positive and negative symptoms of schizophrenia reflect impairments in the perception and initiation of action. Psychological Medicine. 1987 Aug. 17(3): 631-648. Doi: 10.1017/s0033291700025873 Goycoolea, M., Mena, I. and Neubauer, S. (2006) ‘Spontaneous musical auditory perceptions in patients who develop abrupt bilateral sensorineural hearing loss. an uninhibition syndrome?’, Acta Oto-Laryngologica, 126(4), pp. 368–374. doi:10.1080/00016480500416942. Previous article Next article back to MIRAGE
- Making sense of the senses: The 2021 Nobel Prize in Physiology or Medicine | OmniSci Magazine
< Back to Issue 2 Making sense of the senses: The 2021 Nobel Prize in Physiology or Medicine What do spicy food, menthol lozenges and walking around blindfolded have in common? They all activate protein receptors discovered by Professors David Julius and Ardem Patapoutian, the winners of the 2021 Nobel Prize in Physiology or Medicine. by Dominika Pasztetnik 10 December 2021 Edited by Breana Galea & Juulke Castelijn Illustrated by Casey Boswell Stimuli are changes to our environment, such as heat, cold and touch, that we recognise through our senses. We are all constantly bombarded with thousands of these stimuli from our surroundings. Despite this disorder, we are somehow able to perceive and make sense of the world. The protein receptors discovered by Professors Julius and Patapoutian make this possible. Located at the surface of the nerve cell, these receptors convert an external stimulus to an electrical signal. This signal then travels along nerve cells to the brain, allowing us to sense the stimulus. Based in California, Julius and Patapoutian are scientists in the fields of neuroscience and molecular biology. The main interest of their work has been identifying and understanding the protein receptors involved in detecting stimuli. For Julius, his major focus has been to identify the receptors involved in the sensation of pain (1). For Patapoutian, it has been to identify the protein receptors involved in detecting mechanical stimuli, such as touch (2). For their past 25 years of research, Julius and Patapoutian were awarded the Nobel Prize in Physiology or Medicine in October 2021. The Nobel Prize was founded by Alfred Nobel, a Swedish scientist also famous for inventing dynamite. Prior to his death in 1896, Nobel allocated most of his money to the first Nobel Prizes. Since 1901, the Nobel Prize has been annually bestowed on those who, in Nobel’s words, have “conferred the greatest benefit to mankind” in different fields (3). Notable past laureates of the Nobel Prize in Physiology or Medicine include Sir Alexander Fleming, Sir Ernst Chain and the Australian Howard Florey. They were awarded in 1945 for their discovery of the antibiotic penicillin (4). Sir Hans Krebs received the Nobel Prize in 1953 for his discovery of the citric acid cycle (5). Also known as the Krebs cycle, it is a series of reactions used to produce energy in our cells. TRPV1: spice it up It’s a rather chilly morning. You eye the packet of Shin Ramyun that’s been sitting in your pantry for weeks. Without a second thought, you prepare the noodles, adding all the soup powder. After a few mouthfuls, your eyes start streaming and your face matches the scarlet red of the now-empty packaging. The culprit is capsaicin, a substance in the chilli flakes added to the soup powder. It binds to a protein receptor embedded at the surface of the nerve cells in your mouth. Julius discovered this receptor in 1997, and called it TRPV1, which stands for transient receptor potential vanilloid type 1 (6). TRPV1 is a channel with a gate at either end that is usually closed (Figure 1, blue) (7). Capsaicin opens these gates, allowing ions, such as calcium, to move through TRPV1 and into the nerve cell (Figure 1, red). The nerve cell then signals to the brain, causing you to feel the searing heat in your mouth. TRPV1 is also found in your skin and can be activated by temperatures above 40°C, such as when you accidentally touch the kettle full of boiling water for your noodles (8). Figure 1. TRPV1 at the surface of a nerve cell. In the absence of capsaicin or at cool temperatures, TRPV1 is closed (blue). In the presence of capsaicin or at higher temperatures, TRPV1 opens, allowing ions to flow into the nerve cell (red). TRPM8: too cool for school On your way to uni, you notice your throat’s a bit sore from going overboard with karaoke the night before, so you pop a lozenge into your mouth. The soothing, cool sensation is thanks to menthol. It is a compound that binds to TRPM8, which stands for transient receptor potential melastatin 8. It is another receptor found on the nerve cells in your tongue, as well as on your skin (9). TRPM8 was separately discovered in 2002 by both Julius and Patapoutian (10). Like TRPV1, TRPM8 is a protein channel that is usually closed. In response to menthol or cool temperatures from 26 down to 8°C, TRPM8 opens and allows ions to enter the nerve cell, which then signals the cold sensation to your brain (11). PIEZO: peer pressure During your lunch break at uni, you and your mates decide to play blindfolded tag. Because, as we all know, that's what uni students do in their free time. In the first round, you have the misfortune of being chosen as ‘it’. Blindfolded, you walk around with your hands in front of you, trying to find your mates. Despite not being able to see anything, you can still walk and wave your arms and roughly know where your arms and legs are in space. This is due to a sense called proprioception. You lunge forward and nearly grab someone, only to feel their jacket brush your fingers. Both proprioception and the detection of light touch, such as of the jacket brushing your fingers, are made possible by another class of protein receptors called PIEZO2. Discovered by Patapoutian in 2010, its name comes from piesi, the Greek word for pressure (12). Like TRPV1 and TRPM8, PIEZO2 is an ion channel at the nerve cell surface. However, the structure of PIEZO2 is nothing like that of TRPV1 and TRPM8. PIEZO2 has three protruding blades, which form a dent, called a nano-bowl, in the outer surface of the cell (13). When the outside of the cell is prodded, the blades straighten and the nano-bowl flattens. This allows the channel in the centre of the PIEZO2 to open, so ions can flow into the nerve cell (Figure 2). The nerve cell then sends an electrical impulse to the brain, letting you know you’re failing at blindfolded tag. Figure 2. PIEZO at the surface of a nerve cell. When force is applied to the surface of the nerve cell, the PIEZO channel opens, allowing ions to move into the cell. Apart from being essential for playing blindfolded tag, PIEZO2 is also important in various other aspects of the human body’s functioning we often take for granted. For example, PIEZO2 prevents you from breathing in too much air (14). It is also present on the cells lining your digestive tract. PIEZO2 detects pressure exerted onto these cells by food, causing the cells to release hormones that help with digestion (15). Furthermore, PIEZO2 helps monitor the fullness of your bladder, saving you from embarrassment (16). If there is a PIEZO2, what about PIEZO1? Although it has a similar structure to PIEZO2, PIEZO1’s role is quite different. PIEZO1 handles the background maintenance required to keep your body healthy. This includes bone formation (17) and preventing your red blood cells from bursting (18). People with a particular mutated form of PIEZO1 have a reduced risk of getting malaria (19). Patapoutian found that this mutation causes red blood cells to shrivel, preventing the malaria parasite from infecting them. Many people living in malaria-affected areas, such as Africa, have this mutation. Therefore, knowledge regarding these receptors is improving our understanding of related diseases. Drug development Researchers are currently using information about the receptors discovered by Julius and Patapoutian to develop new drugs to treat various conditions. Knowing the identities and structures of these receptors is helping researchers design compounds that bind to them, either blocking or activating them. In this way, Julius and Patapoutian’s work is helping provide a “benefit to mankind”. For example, during a migraine, the TRPV1 channel opens more frequently in the nerve cells of the meninges, the envelope surrounding the brain (20). These nerve cells contain more TRPV1 at their surfaces. This causes the nerve cells to send more electrical signals to the brain and so increases the sensation of pain. Using a drug to block the TRPV1 receptor could reduce the number of these electrical impulses and lessen the pain associated with migraines. It’s been a busy day activating all these receptors, which, as it turns out, are part of your daily life as a uni student. So next time you eat chilli flakes, have a menthol lozenge or play blindfolded tag, you will know which tiny sensors to hold responsible for your pleasant — or unpleasant — experiences. Further reading Press release: The Nobel Prize in Physiology or Medicine 2021 The Nobel Prize in Physiology or Medicine 2021 - Advanced Information References: University of California San Francisco. “Biography of David Julius.” UCSF. Accessed November 10, 2021. https://www.ucsf.edu/news/2021/09/421486/biography-david-julius. Nobel Prize Outreach AB 2021. “Press release: The Nobel Prize in Physiology or Medicine 2021.” The Nobel Prize. Accessed November 10, 2021. https://www.nobelprize.org/prizes/medicine/2021/press-release/. Nobel Prize Outreach AB 2021. "Alfred Nobel’s will." The Nobel Prize. Accessed November 10, 2021. https://www.nobelprize.org/alfred-nobel/alfred-nobels-will/. Nobel Prize Outreach AB 2021. “The Nobel Prize in Physiology or Medicine 1945.” The Nobel Prize. Accessed November 10, 2021. https://www.nobelprize.org/prizes/medicine/1945/summary/ Nobel Prize Outreach AB 2021. “The Nobel Prize in Physiology or Medicine 1953.” The Nobel Prize. Accessed November 10, 2021. https://www.nobelprize.org/prizes/medicine/1953/summary/ Ernfors, Patrik, Abdel El Manira, and Per Svenningsson. "Advanced information." The Nobel Prize. Accessed November 10, 2021. https://www.nobelprize.org/prizes/medicine/2021/advanced-information/. Liao, M., E. Cao, D. Julius, and Y. Cheng. "Structure of the Trpv1 Ion Channel Determined by Electron Cryo-Microscopy." Nature 504, no. 7478 (Dec 5 2013): 107-12. doi: 10.1038/nature12822. Ernfors et al., “Advanced information.” McKemy, D. D. "Trpm8: The Cold and Menthol Receptor." In Trp Ion Channel Function in Sensory Transduction and Cellular Signaling Cascades, edited by W. B. Liedtke and S. Heller. Frontiers in Neuroscience. Boca Raton (FL), 2007. Ernfors et al., “Advanced information.” McKemy, Trp Ion Channel Function in Sensory Transduction and Cellular Signaling Cascades. Coste, B., J. Mathur, M. Schmidt, T. J. Earley, S. Ranade, M. J. Petrus, A. E. Dubin, and A. Patapoutian. "Piezo1 and Piezo2 Are Essential Components of Distinct Mechanically Activated Cation Channels." Science 330, no. 6000 (Oct 1 2010): 55-60. doi: 10.1126/science.1193270. Jiang, Y., X. Yang, J. Jiang, and B. Xiao. "Structural Designs and Mechanogating Mechanisms of the Mechanosensitive Piezo Channels." Trends in Biochemical Sciences 46, no. 6 (Jun 2021): 472-88. doi: 10.1016/j.tibs.2021.01.008. Nonomura, K., S. H. Woo, R. B. Chang, A. Gillich, Z. Qiu, A. G. Francisco, S. S. Ranade, S. D. Liberles, and A. Patapoutian. "Piezo2 Senses Airway Stretch and Mediates Lung Inflation-Induced Apnoea." Nature 541, no. 7636 (Jan 12 2017): 176-81. doi: 10.1038/nature20793. Alcaino, C., K. R. Knutson, A. J. Treichel, G. Yildiz, P. R. Strege, D. R. Linden, J. H. Li, et al. "A Population of Gut Epithelial Enterochromaffin Cells Is Mechanosensitive and Requires Piezo2 to Convert Force into Serotonin Release." Proceedings of the National Academy of Sciences of the United States of America 115, no. 32 (Aug 7 2018): E7632-E41. doi: 10.1073/pnas.1804938115. Marshall, K. L., D. Saade, N. Ghitani, A. M. Coombs, M. Szczot, J. Keller, T. Ogata, et al. "Piezo2 in Sensory Neurons and Urothelial Cells Coordinates Urination." Nature 588, no. 7837 (Dec 2020): 290-95. doi: 10.1038/s41586-020-2830-7. Li, X., L. Han, I. Nookaew, E. Mannen, M. J. Silva, M. Almeida, and J. Xiong. "Stimulation of Piezo1 by Mechanical Signals Promotes Bone Anabolism." Elife 8 (Oct 7 2019). doi: 10.7554/eLife.49631. Cahalan, S. M., V. Lukacs, S. S. Ranade, S. Chien, M. Bandell, and A. Patapoutian. "Piezo1 Links Mechanical Forces to Red Blood Cell Volume." Elife 4 (May 22 2015). doi: 10.7554/eLife.07370. Ma, S., S. Cahalan, G. LaMonte, N. D. Grubaugh, W. Zeng, S. E. Murthy, E. Paytas, et al. "Common Piezo1 Allele in African Populations Causes Rbc Dehydration and Attenuates Plasmodium Infection." Cell 173, no. 2 (Apr 5 2018): 443-55 e12. doi: 10.1016/j.cell.2018.02.047. Dux, M., J. Rosta, and K. Messlinger. "Trp Channels in the Focus of Trigeminal Nociceptor Sensitization Contributing to Primary Headaches." International Journal of Molecular Sciences 21, no. 1 (Jan 4 2020). doi: 10.3390/ijms21010342. Previous article back to DISORDER Next article
- A Frozen Odyssey: Shackleton’s Trans-Antarctic Expedition | OmniSci Magazine
< Back to Issue 6 A Frozen Odyssey: Shackleton’s Trans-Antarctic Expedition by Ethan Bisogni 28 May 2024 Edited by Rita Fortune Illustrated by Aisyah Mohammad Sulhanuddin The Heroic Age of Antarctic Exploration South of the 66th parallel lies a continent desolate and cruel, where the experiences of those who dared to challenge it are preserved in its ice. Antarctica was deemed Earth’s final frontier by 19th-century explorers, and at the cusp of the 20th century, the ‘Heroic Age of Antarctic Exploration’ was underway (Royal Museums Greenwich, n.d. a). Those who answered the call of the wild, to face the polar elements, would be remembered as heroes. Among the pantheon of Antarctic explorers, none are more celebrated than Sir Ernest Shackleton. An Irishman whose name became synonymous with adventure and peril, Shackleton emerged at the forefront of Britain’s polar conquests. During his Nimrod expedition to reach the magnetic South Pole, Shackleton and his crew found themselves within 100 miles of their goal—only to be thwarted by their human needs (Royal Museums Greenwich, n.d. b). His ambition outmatched the capabilities of those he commanded, so they withdrew for want of survival. Despite the supposed failure of the two-year expedition, Shackleton’s romanticism of exploration, leadership, and unwavering optimism earned him a knighthood in 1909 (Royal Museums Greenwich, n.d. b). In the years following, as other explorers performed increasingly remarkable polar feats, Shackleton was left in limbo. It was during this time that an impossibly ambitious expedition was put forward to him. The plan was as follows: a crew would sail a wooden barquentine, the Endurance, into the Weddell Sea, and land on the Antarctic coast. There, the men would split into groups, and Shackleton would pursue a daring transcontinental journey across Antarctica (Smith, 2021). Despite the questionable feasibility of this plan, a benefactor named James Caird sought to help fund the expedition (Smith, 2021). Thus, these plans were translated into reality, and with a finalised crew of 27, the Endurance was set to sail under the helm of New Zealand captain Frank Worsley. On August 1st, 1914, the Endurance departed Plymouth (PBS, 2002). Explorers of the Antarctic, from left: Ronald Amundsen, Sir Ernest Shackleton, Robert Peary (Antarctica 21, 2017) The Imperial Trans-Antarctic Expedition Into the Weddell Sea, December 5th, 1914 After their momentary recess in South Georgia, and the recent pickup of a stowaway, the Grytviken whaling station remained the crew's last semblance of civilisation (PBS, 2002). Shackleton was well aware of the challenges that loomed ahead—notorious for its hostility, the Weddell Sea was Antarctica’s first line of defence (Shackleton, 1919). In the coming days, the Endurance encountered pack ice, severely slowing its progress. A nightmarish phenomenon for any explorer, pack ice was an abundant drift of sea ice no longer connected to land. While plentiful, navigating it was not impossible—it only required patience, caution, and an intuitive hint of wisdom. But even with worsening conditions, Shackleton proceeded into unclear waters (Shackleton, 1919). The Endurance in the Weddell Sea (Hurley, 1914) Icebound, January 18th, 1915 The Endurance was again ensnared in ice, and this time the ship would not budge. Plagued by regret in pushing ahead, but desperate to break free, Shackleton ordered his men to cease routine. Once again, his ambition outpaced his capabilities, but Shackleton was also a man of determination. They would wait until an opening cleared (Shackleton, 1919). The ship began to drift northward with the ice, but as months passed, so too did any hope of landing. Time was running out, and with winter approaching, the Endurance would soon be engulfed by the long polar night (PBS, 2002). For this expedition to succeed, the crew needed to remain optimistic. A brotherhood formed on the ice, with theatre plays and celebrations to ease their dire worries. The eerie creak of the hull did not deter them from trekking the very ice that imprisoned them. The ship’s Australian photographer, Frank Hurley, captured these moments of perseverance on photographic plates, including the hauntingly beautiful Endurance beset amongst the snow (Shackleton, 1919). The Endurance in the night (Hurley, 1915) Abandon Ship, October 27th, 1915 True to its name, the Endurance weathered the dark winter months. But despite the comfort of a newly rising sun, disaster did not fade with the darkness. A catastrophic ice shift had violently imploded the ship’s hull, and with its fate sealed, the Endurance would not hold. Shackleton gave the order to abandon ship (Shackleton, 1919). Any hope of the expedition continuing was now lost alongside the Endurance , which was silently withering on the ice. Though this was not Shackleton’s first time in Antarctica, nor was it his first disastrous expedition. Stations of emergency supplies established by himself and other explorers were scattered across the islands of the Weddell Sea, each offering glimmers of hope. However, at over 500 kilometres away, they all required a potentially fatal journey (Shackleton, 1919). Frank Wild overlooking the wreck of the Endurance (Hurley, 1915) Ocean Camp, November 1st, 1915 A plan was conjured—they would march across the unforgiving ice, bringing themselves to one of the few sanctuaries along the Antarctic Peninsula. Concerns of risk from Captain Worsley fell on deaf ears; undeterred, Shackleton knew waiting was futile (Worsley, 1931). Leading up, a difficult decision was made to conserve the crew’s rations. Mrs. Chippy, the beloved ship cat of carpenter Harry McNish, was to be killed amongst the other animals (Canterbury Museum, 2018). Although believing it necessary, Shackleton’s remorseful orders to cull the animals aboard had cast a shadow over his leadership (Scott Polar Research Institute, n.d.). The march soon commenced, but horrendous conditions had led the men into a frozen labyrinth. After a pace of only a kilometre a day, the march was abandoned. The crew instead erected ‘Ocean Camp’, and were to wait for the ice to clear a path for their lifeboats (PBS, 2002). Weeks in, the crew's evening was interrupted by the ghostly wailing of the Endurance wreck . Beckoning in the distance, the men gathered to watch its final breaths. On November 21st, the ice finally caved in, and the Endurance was swallowed into the forsaken depths of the Weddell Sea (Worsley, 1931). Ocean Camp (Hurley, 1915) The Rebellion on the Ice, December 27th, 1915 With the crew’s last tether to the world severed, a depression had settled over the camp. Now dragging their lifeboats to open water, a quiet but persistent discontent was beginning to grow. Most of the crew still admired Shackleton as their resolute leader, but some were beginning to lose faith. A frustrated and grieving McNish made his stand, arguing that the loss of the Endurance had nullified Shackleton's command. Shackleton, furious but sympathetic, was able to successfully de-escalate the situation (Scott Polar Research Institute, n.d.). The mutiny was short-lived, but McNish was now under Shackleton's watchful eye. He knew that he would have to inspire hope, and that a rift in the crew would only prompt death. Dragging the lifeboats (Hurley, 1915) Elephant Island, April 14th, 1916 With three lifeboats in possession, a proposal to island-hop was presented. McNish had spent his time reinforcing the boats for open waters, and after careful deliberation, a destination was chosen. Elephant Island was a barren, windswept landscape—a false sanctuary harbouring an inhospitable environment. Landing there was not Shackleton’s first choice, but a fast approaching winter left no alternative (Shackleton, 1919). With Elephant Island looming over the horizon, the boats set forth. Battling the arduous sea, one of the lifeboats, the Dudley Docker , was torn away from the rest during an unprecedented storm. Fading into the vast darkness, the men aboard were presumed dead. No amount of enthusiasm from Shackleton could lift the crew's spirits, who were now delirious and grief stricken (Fiennes, 2022). The following day, a landing was imminent. Nearing the shore, a boat was noticed soaring in the distance. The Dudley Docker pierced through the waves—the crew still alive and following in hot pursuit. Ecstatic and revived with hope, landfall was made. A major milestone had been reached; the crew were now unified and ashore for the first time since South Georgia (Fiennes, 2022). Unfortunately, Elephant Island’s taunting winds carried no whispers of hope. The silence was apparent: this island would be their grave unless contact was made with civilisation. A party must be formed, one that would take the risk and sail into the heavy seas of the Southern Ocean (Shackleton, 1919). The shores of Elephant Island (Hurley, 1916) The Voyage of the James Caird, April 24th, 1916 Shackleton selected a route to a South Georgia whaling station neighbouring the one they had departed in 1914—a harrowing 1500 kilometres across notoriously restless seas. In one of their modified lifeboats, they were to utilise the prevailing westerlies to attempt an impossible sailing feat (Pierson, n.d.). Six men were selected to commander the James Caird : Shackleton, Worsley, McNish, Crean, Vincent, and McCarthy. As the James Caird set sail, a vast ocean of uncertainty lay between Elephant Island and South Georgia (Pierson, n.d.). The voyage was tortuous, with the men severely ill-prepared. From storm-fed waves to frigid winds, the James Caird and those aboard were unlikely to survive the journey. At each turn, however, the determined men managed to stay afloat and push ahead. 17 days passed before the dominant mountains of South Georgia came into view (PBS, 2002). Shackleton, fearing his men would not survive another day at sea, hastened a plan to land on the rocky western shores (Pierson, n.d.). The six men found themselves on the wrong end of the island to the station, and James Caird was in no state to navigate the coast. The capable individuals would have to perform the first trans-island crossing of South Georgia—a far cry from their original ambitions, but daring nonetheless. With only Shackleton, Worsley, and Crean able to attempt the task ahead, McNish, Vincent, and McCarthy were left to establish ‘Peggotty Camp’ in the landing cove (Pierson, n.d.). Waving goodbye to the James Caird (Hurley, 1916) The Crossing of South Georgia, May 10th, 1916 The three men began their journey northward towards the Stromness whaling station. Encountering menacing snow-capped peaks, the men were so close to potential rescue only to be divided by insurmountable odds. Needing to race the approaching night down a 3000-foot mountainside, a makeshift sled was constructed from their little equipment. Rocketing downhill, a rare moment of joy and exhilaration accompanied the men along their daredevilish tactics (Antarctica Heritage Trust, 2015). Exhausted and verging on collapse, the men were now nearing the outskirts of their destination. A whistle in the air had lured them closer, and on May 20th, 1916, contact was finally made. The men were tended to by the distraught station managers, and a rescue party was sent the following day to those abandoned at ‘Peggotty Camp’ (Pierson, n.d.). After multiple attempts to obtain a suitable vessel, the 22 remaining souls holding steadfast on Elephant Island were finally rescued by the Yelcho on August 30th, 1916. Hope was not lost amongst them, as even in his absence their belief in Shackleton kept their spirits alive. Bringing their ordeal to a close, and without a man’s life lost, the crew’s troubles were left behind in the frozen Antarctic (Shackleton, 1919). The Yelcho arrives to rescue the crew (Hurley, 1916) Legacy Published in 1919, ‘South’, Shackleton’s autobiographical recount of the expedition, brought these remarkable stories into the limelight. However, records stricken from the novel hide some concerning truths. While omitting the incident regarding McNish’s mutiny, it was clear Shackleton resented him for introducing doubt during their time of turmoil. Despite his redemption during their voyage to South Georgia, Shackleton recommended McNish not be awarded the Polar medal—a decision still considered mistakenly harsh (Scott Polar Research Institute, n.d.). But despite his flaws and misjudgments, Shackleton was undoubtedly the optimistic and courageous leader you would seek in times of crisis. In 1922, aboard his final expedition to circumnavigate Antarctica, Shackleton suffered a fatal heart attack - and was buried in South Georgia. Regarded as a defining moment, his death signalled the end of the ‘Heroic Age of Antarctic Exploration’ (Royal Museums Greenwich., n.d. b). Exactly one century following, the Endurance was found preserved at the bottom of the Weddell Sea. Its mast still bearing its inscription, the ship remains an enduring remnant of a heroic past. This inspiring tale of survival continues to live on, as one of the greatest stories of human perseverance in the face of the elements. The crew of the Endurance (Hurley, 1915) References Antarctica 21. (2017). Famous Antarctic Explorers: Sir Ernest Henry Shackleton. Antarctica 21 . https://www.antarctica21.com/journal/famous-antarctic-explorers-sir-ernest-henry-shackleton/ Antarctica Heritage Trust (2015). Crossing South Georgia. Antarctic Heritage Trust. https://nzaht.org/encourage/inspiring-explorers/crossing-south-georgia/ Canterbury Museum (2018), Dogs in Antarctica: Tales from the Pack. Canterbury Museum https://antarcticdogs.canterburymuseum.com/themes/hardships Fiennes, R (2022). Remembering a Little-Known Chapter in the Famed Endurance Expedition to Antarctica. Atlas Obscura, https://www.atlasobscura.com/articles/shackleton-endurance-elephant-island Hurley, F. (1914-1916). Imperial Trans-Antarctic Expedition Photographic Plates. [Photographs]. National Library of Australia. https://www.nla.gov.au/collections/what-we-collect/pictures/explore-pictures-collection-through-articles-and-essays/frank PBS (2002). Shackleton’s Voyage of Endurance. PBS Nova. https://www.pbs.org/wgbh/nova/shackleton/1914/timeline.html Pierson, G (n.d.), Excerpt: The Voyage of the James Caird by Enerest Shackleton. American Museum of Natural History. https://www.amnh.org/learn-teach/curriculum-collections/antarctica/exploration/the-voyage-of-the-james-caird Royal Museums Greenwich. (n.d. a). History of Antarctic explorers. Royal Museums Greenwich. https://www.rmg.co.uk/stories/topics/history-antarctic-explorers Royal Museums Greenwich. (n.d. b). Sir Ernest Shackleton. Royal Museums Greenwich. https://www.rmg.co.uk/stories/topics/sir-ernest-shackleton Scott Polar Research Institute (n.d.). McNish, Carpenter. University of Cambridge, Scott Polar Research Institute. https://www.spri.cam.ac.uk/museum/shackleton/biographies/McNish,_Henry/ Shackelton, E (1919). South: The Endurance Expedition. Heinemann Publishing House Smith, M (2021). Shackleton's Imperial Trans-Antarctic Expedition. Shackleton. https://shackleton.com/en-au/blogs/articles/shackleton-imperial-trans-antarctic-expedition Worsley, F (1931). Endurance: An Epic of Polar Adventure. W. W. Norton & Co Previous article Next article Elemental back to
- “Blink and you’ll miss it”: A Third Eyelid?
By Rachel Ko < Back to Issue 3 “Blink and you’ll miss it”: A Third Eyelid? By Rachel Ko 10 September 2022 Edited by Ashleigh Hallinan and Yvette Marris Rachel Ko Next The creature snarls a deep, thundering growl, tensing its protruding muscles that are covered in layers of thick, green, armour-like scales, individually rattling by the sheer force of its stance. Clenching its claws, the lizard glares with a bizarrely human expression, a villain trapped in a peculiar hybrid humanoid form. As the screams of terrified students fill the air, the camera zooms into the mutant’s glistening yellow eye, and it blinks; a slimy, translucent covering flickers across its eyeball, leaving a trail of moisture - grotesque proof of its reptilian form. A charm of the cinematic world is that aliens, radioactive spider superheroes and giant mutant lizards can exist in the same universe as the regular person. On a recent movie night, watching The Amazing Spiderman, the villain Lizard caught my eye. The creature is a metamorphosed version of human scientist Dr Curt Connors, who had attempted cross-species genetic regeneration on himself. Largely CGI, the Lizard’s primitive no-frills characterisation makes him an unconventional superhero antagonist. However, upon focus, these exaggerated reptilian characteristics are wha become staples of the Lizard’s uniquely villainous appeal: the alien-green colouring, the razor-sharp claws, the terrifying teeth and, of course, the glistening yellow eyes. Figure 1: Spiderman's 'The Lizard' In reference to the creation of these eerie eyeballs, animation supervisor David Schaub confirmed the purposeful inclusion of a nictitating membrane (1). This membrane is a slimy skin-like covering more commonly known as the Third Eyelid. In animals such as birds, reptiles, fish, amphibians, and some mammals (2), it acts as a bizarre protective mechanism that maintains moisture while retaining vision (3) - and also gives the Lizard’s glare that extra kick. Acting like a windscreen wiper, the membrane ‘nictitates’, meaning it blinks, to keep debris and dust out of the eye while simultaneously hydrating it. Its transparency also allows vision underground or underwater (4). Figure 2: A bird blinking! There is just one primate species known to have a prominent nictitating membrane: the Calabar angwantibo, also known as the golden potto, which is a rare African prosimian primate found only in Cameroon and Nigeria (5). Figure 3: Look at the Calabar's nictating membrane! The membrane is a major characterising feature of The Amazing Spiderman’s creepy mutant reptilian aura. However, this Third Eyelid actually has a homologous counterpart in Dr Connors’ eyes too. In fact, it is found in all humans, and is known as our plica semilunaris, a vertical fold of conjunctiva in the inner corner of the eye (6). Although it plays a minor role in eye movement and tear drainage (7), the plica semilunaris has nowhere near as great a function in humans as the nictitating membrane does in animals (8). The plica semilunaris and its associated muscles are merely an evolutionary remnant of the nictitating membrane that existed in our reptilian ancestors millions of years ago (9). Evolution is driven by selective advantage: the traits that allow organisms to survive and reproduce are the ones that are selected for and thrive within the population, passed down from one generation to the next (10). Traits that are disadvantageous to organisms decrease their chance of survival and reproduction, meaning fewer offspring will inherit the trait, causing it to eventually disappear from the population (11). The mystery remains as to why human ancestors lost the nictitating membrane in the first place, but it is likely that changes in habitat and lifestyle regarding eye physiology made it selectively advantageous to lose the Third Eyelid, rather than wasting precious energy on maintaining a no-longer-vital mechanism (12). For some reason, though, once the nictitating membrane had evolved into nothing more than a miniscule pink fold in the corner of the eye, it still persisted. Some argue that this is because humans have had no evolutionary incentive to completely lose them (13) – the plica semilunaris is just harmless enough that it has flown under the radar of evolution’s cut. Having suggested that, however, the primary clinical significance of the plica semilunaris has been connected to allergies of the eye, in which release of inflammatory molecules like histamine causes the tissue to become swollen and itchy (14). Thus, it is worth considering another argument: that the persistence of the plica semilunaris may be indicative of some beneficial function, particularly in its role in human eye protection. It has been found that the tissue observed in early intrauterine (within the uterus) development has a dense infiltration of immune cells like macrophages and granulocytes that serve to engulf and destroy foreign invaders of the tissue (15). Along with the abundance of blood vessels and immune chemical signalling, this has suggested a specialised role in eye protection, a benefit that may have very well ensured the plica semilunaris’ survival within human populations until this day (16). One fascinating clinical case, which showcases the outlandish capabilities of this vestigial feature, is of a child for whom it was not a question of why the plica semilunaris persisted, but an actual nictitating membrane. This peculiar instance was presented on a 9 year-old girl whose left eye had a non-progressive translucent membrane covering it horizontally. The globe of the eye was able to move freely beneath the membrane, suggesting that there was no attachment. However, it was causing amblyopia (also known as a lazy eye), and poor vision, so the nictitating membrane was successfully removed by simple excision (17). Figure 4: The plica semilunaris Figure 5: A clinical case of a human nictating membrane The only other recorded case of persisting nictitating membrane was an infant boy born prematurely with Edwards syndrome, who had nictitating membranes in both eyes (18). However, due to the baby’s infancy and condition, membrane imaging was unobtainable. Thus, arguably, the most striking aspect of the 9 year-old girl’s case was the pre-procedure imaging of her eye: an intriguing, almost alien-like fusion of the human eye and that of our reptilian ancestors. This case study can be interpreted as an exaggerated example of an existing link between the nictitating membranes we see in animals today, and the plica semilunaris that exists, tucked away, in the corner of our very own eyes. So, next time you find yourself staring into your partner’s baby blues, or putting on eyeliner in the mirror, keep an eye out for this fascinating evolutionary remnant; but be quick because - blink and you’ll miss it. References Sarto D. 'Spider-Man'’s Lizard Part 1: The Animation [Internet]. Animation World Network. 2012 [cited 4 May 2022]. Available from: https://www.awn.com/vfxworld/spider-mans-lizard-part-1-animation Butler A, Hodos W. Comparative vertebrate neuroanatomy. Hoboken (New Jersey): Wiley-Interscience; 2005. Why do cats have an inner eyelid as well as outer ones? [Internet]. Scientific American. 2006 [cited 4 May 2022]. Available from: https://www.scientificamerican.com/article/why-do-cats-have-an-inner/ The Equine Manual [Internet]. Elsevier; 2006. Available from: http://dx.doi.org/10.1016/B978-0-7020-2769-7.X5001-1 Montagna W, Machida H, Perkins EM. The skin of primates. XXXIII. The skin of the angwantibo (Arctocebus calabarensis) [Internet]. Vol. 25, American Journal of Physical Anthropology. Wiley; 1966. p. 277–90. Available from: http://dx.doi.org/10.1002/ajpa.1330250307 Plica semilunaris [Internet]. Merriam-Webster.com medical dictionary. [cited 4 May 2022]. Available from: https://www.merriam-webster.com/medical/plica%20semilunaris LaFee S. Body and Whole [Internet]. UC Health - UC San Diego. 2016 [cited 4 May 2022]. Available from: https://health.ucsd.edu/news/features/pages/2016-06-30-listicle-body-and-whole.aspx Dartt D. Foundation Volume2, Chapter 2. The Conjunctiva–Structure and Function [Internet]. Oculist.net. 2006 [cited 4 May 2022]. Available from: http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v8/v8c002.html Gonzalez R. 10 Vestigial Traits You Didn't Know You Had [Internet]. Gizmodo. 2011 [cited 4 May 2022]. Available from: https://gizmodo.com/10-vestigial-traits-you-didnt-know-you-had-5829687 Sukhodolets V. V. (1986). K voprosu o roli estestvennogo otbora v évoliutsii [The role of natural selection in evolution]. Genetika, 22(2), 181–193. Sukhodolets V. V. (1986). K voprosu o roli estestvennogo otbora v évoliutsii [The role of natural selection in evolution]. Genetika, 22(2), 181–193. Gonzalez R. 10 Vestigial Traits You Didn't Know You Had [Internet]. Gizmodo. 2011 [cited 4 May 2022]. Available from: https://gizmodo.com/10-vestigial-traits-you-didnt-know-you-had-5829687 Kotecki P, Olito F. We No Longer Need These 9 Body Parts [Internet]. ScienceAlert. 2019 [cited 4 May 2022]. Available from: https://www.sciencealert.com/we-no-longer-need-these-9-body-parts Bielory L, Friedlaender MH. Allergic Conjunctivitis [Internet]. Vol. 28, Immunology and Allergy Clinics of North America. Elsevier BV; 2008. p. 43–58. Available from: http://dx.doi.org/10.1016/j.iac.2007.12.005 Arends G, Schramm U. The structure of the human semilunar plica at different stages of its development a morphological and morphometric study [Internet]. Vol. 186, Annals of Anatomy - Anatomischer Anzeiger. Elsevier BV; 2004. p. 195–207. Available from: http://dx.doi.org/10.1016/S0940-9602(04)80002-5 Arends G, Schramm U. The structure of the human semilunar plica at different stages of its development a morphological and morphometric study [Internet]. Vol. 186, Annals of Anatomy - Anatomischer Anzeiger. Elsevier BV; 2004. p. 195–207. Available from: http://dx.doi.org/10.1016/S0940-9602(04)80002-5 Vokuda H, Heralgi M, Thallangady A, Venkatachalam K. Persistent unilateral nictitating membrane in a 9-year-old girl: A rare case report [Internet]. Vol. 65, Indian Journal of Ophthalmology. Medknow; 2017. p. 253. Available from: http://dx.doi.org/10.4103/ijo.IJO_436_15 García-Castro JM, Carlota Reyes de Torres L. Nictitating Membrane in Trisomy 18 Syndrome [Internet]. Vol. 80, American Journal of Ophthalmology. Elsevier BV; 1975. p. 550–1. Available from: http://dx.doi.org/10.1016/0002-9394(75)90228-7 Images Figure 1: Galloway, R. (2022, January 25). Lizard originally had a different look in 'Spider-Man: No way home'. We Got This Covered. Retrieved August 9, 2022, from https://wegotthiscovered.com/movies/lizard-originally-had-a-different-look-in-spider-man-no-way-home/ Figure 2: Hudson T. (2010, July) Retrieved Sep 13, 2022, from https://en.wikipedia.org/wiki/Nictitating_membrane#/media/File:Bir d_blink-edit.jpg Figure 3: Sharma R. Calabar angwantibo - Alchetron, The Free Social Encyclopedia [Internet]. Alchetron.com. 2018 [cited 7 May 2022]. Available from: https://alchetron.com/Calabar-angwantibo Figure 4: Amir, D. (2019, January 16). Twitter. Retrieved August 9, 2022, from https://twitter.com/dorsaamir/status/1085557444196 081664 Previous article Next article alien back to
- Unpacking the latest IPCC report | OmniSci Magazine
The Greenhouse Unpacking the Latest IPCC Report - What Climate Science is Telling Us By Sonia Truong The most comprehensive climate science report to date, this sixth assessment report reveals the reality of climate change and stresses that we need to take action urgently. Edited by Jessica Nguy & Yen Sim Issue 1: September 24, 2021 Illustration by Jess Nguyen On the 9th of August 2021, the United Nations Intergovernmental Panel on Climate Change (IPCC) released its first instalment of the IPCC Sixth Assessment Report from Working Group I, Climate Change 2021 — The Physical Science Basis of Climate Change. The IPCC is one of the world’s leading authorities on climate change and its reports provide an important scientific framework for governments to develop climate policies. With the collaborative effort of 234 leading climate scientists and more than 1,000 contributors, the latest IPCC report provides the most up-to-date information about the scientific basis of climate change and the effects of human activity on Earth’s systems. The report can be found online — it features a ‘Summary for Policymakers’ document exploring key findings across four topic areas as well as a comprehensive ‘Full Report’ which assesses and compiles peer-reviewed literature on climate science from across the globe. The report also features the IPCC WGI Interactive Atlas which explores observed and projected regional climate changes across different emissions and warming scenarios. Three key takeaways from the IPCC report are described below. #1: Human activity has contributed to climate change It in unequivocal that human influence has warmed the atmosphere, ocean and land. Headline statement from the IPCC’s ‘Summary for Policymakers’, AR6 2021 Advancements in attribution studies have allowed scientists to better simulate Earth’s responses to natural and anthropogenic factors and estimate the extent of human influence on observed climate trends. For the first time, the IPCC report has been able to state with a very high level of certainty that anthropogenic factors have been the main driver of increasing temperature extremes since the mid-19th century. Figure SPM.1 shows that simulated natural factors do not come close to explaining the observed increase in global surface temperature since the mid-19th century. Figure SPM.1: A powerful comparison of changes in global surface temperature since 1850 with and without human factors. This figure shows that the effects of natural climate drivers on global warming have been negligible compared to human influence on the climate. IPCC AR6, ‘Summary for Policymakers’ Atmospheric greenhouse gas concentrations are higher than what they have been in the last two millennia and have been increasing at an unprecedented rate, mainly due to human activities in greenhouse gas combustion and deforestation. According to the report, greenhouse gas emissions from human activities have caused warming of approximately 1.1°C above pre-industrial average. In fact, human activities have caused enough emissions for even greater warming, but this has been partially counteracted by the cooling effect of aerosols in the atmosphere. Some recent heat extremes would have been virtually impossible without the influence of human forcing factors. Siberia’s prolonged heatwaves of 2020, for example, would have occurred less than once every 80,000 years without human-induced climate change. Moreover, the onset of Siberia’s wildfire season saw record-high temperatures throughout 2020 and 2021 as well as the burning of over 16 million hectares of land. Even in today’s climate, such extreme weather events are unlikely, but have been predicted to become more frequent by the end of this century. #2: Every region will experience environmental changes due to climate change The IPCC report states that the “widespread, rapid and intensifying” effects of climate change will be experienced by every region in a multitude of ways. Since the release of the last IPCC report in 2018, the world has observed an increase in acute weather events such as widespread flooding, storms, drought, fire weather and heatwaves. These are predicted to increase in frequency and severity as a result of human-induced climate change. Many changes in the climate system become larger in direct relation to increasing global warming. They include increases in the frequency and intensity of hot extremes, marine heatwaves, and heavy precipitation, agricultural and ecological droughts in some regions, and proportion of intense tropical cyclones, as well as reductions in Arctic sea ice, snow cover and permafrost. B.2 from the IPCC’s ‘Summary for Policymakers’, AR6 2021 Several environmental changes due to climate change are already irreversible. Notably, global sea level rise and ocean acidification are set in long-term motion and will proceed at rates which will depend on future emissions. Glacial retreat is occurring synchronously across the world and glaciers will continue to melt for decades or centuries. All emission scenarios within the 21st century described in the report have revealed that global temperature changes will exceed a 1.5ºC increase, even in the lowest emissions scenario (SSP1-1.9). Thus, warming will reach a critical level regardless of actions that the world takes now. We can, however, prevent further temperature increases with deep reductions in global greenhouse gas emissions (especially carbon dioxide and methane). Figure SPM.5: All regions of the world (with one exception) will experience warming as a result of climate change, although not at an equal level. IPCC AR6, ‘Summary for policymakers’ Environmental changes at a 2ºC warming will be more pronounced and widespread, and extremes are likely to exceed critical tolerance thresholds in human health, ecological systems and agriculture. Australia, in particular, is vulnerable to experiencing scarce water resources in drought-prone areas and flooding and landslide events due to heavy rainfall events. Australia’s coastlines are also prone to erosion and flooding from rising sea levels and extreme meteorological events. The IPCC report examines evidence for climate ‘tipping points’ which, due to uncertainty about the Earth’s feedback systems, “cannot be ruled out” in climate projections. These tipping points are key thresholds that will lead to large-scale and irreversible damages to the Earth’s systems if breached. One of these tipping points is the loss of the Greenland ice sheet which is melting at an unprecedented rate. Surface melt of this major ice sheet involves a number of positive feedback loops which exacerbate the melting as the ice surface gets darker and less reflective of solar radiation. Scientists warn that, while highly unlikely, there is a possibility that we will reach a tipping point with current warming trends. #3: We need to make drastic reductions in greenhouse gas emissions immediately The Sixth Assessment Report tells us, with greater certainty than ever before, that human activities over the past six decades have caused global warming trends and affected climate extremes globally. These trends are likely to continue on a long-term scale. Most importantly, the report stresses that if we want any chance of limiting global temperature rise to 1.5ºC above pre-industrial levels, we must urgently make strong, sustained reductions in global greenhouse gas emissions. The current global carbon budget to remain below 1.5ºC warming is estimated to be at an additional 500 billion tonnes of greenhouse gas. To remain within this budget, we need to achieve net zero carbon dioxide emissions by 2050. Reductions in greenhouse gas emissions will only be achieved with meaningful climate action. If we can drastically reduce emissions now, we will still have a chance of averting the climate crisis. The two succeeding instalments of the IPCC Sixth Assessment Report will cover the impacts of climate change and mitigation of climate change and are planned to be released in 2022. References: IPCC, 2021: Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [MassonDelmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press. In Press.
- A Message from the Editors in Chief | OmniSci Magazine
< Back to Issue 5 A Message from the Editors in Chief Rachel Ko & Ingrid Sefton 24 October 2023 Edited by Committee Illustrated by Aisyah Mohammad Sulhanuddin “There are known knowns. These are things we know that we know. There are known unknowns. That is to say, there are things that we know we don't know. But there are also unknown unknowns. There are things we don't know we don't know.” - Donald Rumsfeld Science should never be considered as pursuing absolute truth. In fact, more often than not, the deeper we dive into its exploration, the more questions that arise. The world of science affords us choices in how we appropriate the understandings and knowledge gained in its study. Every day, science pushes us to tiptoe this fine line between pushing boundaries and crossing them altogether. It is perhaps this unknown that makes the pursuit of science so wicked in itself, taunting us with the promise of making the next big discovery, or finally finding the cure to cancer. But it is also what drives us, entrances us, and keeps our desire for knowledge burning — it’s edge-of-your-seat exciting. At its onset, we envisioned this issue as a chance to probe the mysterious nuances of science — a peek into the ‘Wicked’ness of the world. Seeking to ask questions of the ethical, the malicious and the unknown, contributors were inspired to delve into the darker sides of science. Each article ventures into the limits of what we do, and, just as importantly, don’t know in this ever-evolving field. The word Wicked in itself is a complex character, begging for ambiguous interpretation. Is there such a thing as pure evil? Are we all, just a bit, inherently wicked? What makes something wickedly cool? (Was Kristin Chenoweth’s Glinda the best portrayal that Broadway could ask for?) And so, in the hands of our creators, something wicked this way comes … As with every edition of our magazine, each piece has been created, edited and illustrated entirely by students. This issue continues to stand true to our aim of providing a platform within, and beyond, the university community for students of all backgrounds to craft their science communication skills in a supportive, creative environment. Countless hours have been poured into the curation of each edition with the hope of making innovative science content easily accessible — so please, enjoy! To all our passionate, dedicated contributors - thank you for the time you have invested in crafting the wonderful, wicked world of Issue 5 of OmniSci. It has been a privilege to watch the collaboration of inquisitive minds, from diverse scientific and artistic worlds, produce this collection of work. We also wish to extend our gratitude to you, our wonderful readers, in your ongoing support of OmniSci. The time you give to reading and engaging with our student-driven magazine does not go unnoticed, motivating and inspiring us for our future endeavours. Now, take a moment, and come venture into the Wicked world of Issue 5 with us… Wicked back to
- Thinking Outside the Body: The Consciousness of Slime Moulds | OmniSci Magazine
< Back to Issue 8 Thinking Outside the Body: The Consciousness of Slime Moulds by Jessica Walton 3 June 2025 Edited by Han Chong Illustrated by Ashlee Yeo Imagine yourself as an urban planner for Tokyo’s public transport system in 1927. Imagine mapping out the most efficient paths through dense urban sprawl, around obstructing rivers and mountains. And imagine meticulously designing the most efficient possible model, after years of study and expertise… only to find your design prowess, 83 years later, matched by a slime mould: a creature with no eyes, no head nor limbs, nor nervous system. Of course, this is anachronistic. For one, the Tokyo railroad system developed over time, not all at once. But it was designed to meet the needs of the city and maximise efficiency. Yet in 2010, when researchers exposed the slime mould Physarum polycephalum to a plate mimicking Tokyo city (with population density represented by oat flakes) it almost exactly mimicked the Tokyo railroad system (1). This became one of the most iconic slime mould experiments, ushering in a flood of research about biological urban design asking the question: Could a slime mould, or other similar organisms, map out human cities for us? But a slime mould doesn’t know what cities are. They’re single-celled organisms; they don’t understand urban planning, or public transport, or humans. They are classified as protists, largely because we’re not sure how else to categorise them, not because they’re particularly ‘protist-y.’ They have no brain and are single-celled for most of their life; so they can’t plan routes, have preferences, or make memories. Right? Except, perhaps they can. Slime moulds are extremely well-studied organisms because they exhibit precisely these behaviours. But how do they think? And what does it mean— to think ? Slime moulds have evidenced memory and learning. The protoplasm network they form is really just one huge cell that eventually develops into a plasmodium, growing and releasing spores. While plasmodial slime moulds (like P. polycephalum ) do this during reproduction, cellular slime moulds (dictyostelids) are able to aggregate together into one cell like this when food is scarce or environments are difficult (meaning they must be able to detect and evaluate if these things are true). Most slime mould behaviour is understood through cell signalling and extracellular interaction mechanisms; responding to chemical gradients using receptors along their membrane, which signal to the cells to move up the concentration gradient of a chemoattractant molecule and away from a chemorepellent. This makes sense; bacteria (like almost every other living organism) do this all the time and it’s the chief way that they make decisions . But what about memory and preferences? What about stimuli beyond the immediate detected chemicals? Slime moulds can, for example, anticipate repeated events and avoid simple traps to reach food hidden behind a U-shaped barrier (2,3). These are beyond input-to-output; something more complex must be happening. Something conscious? Thinking ? The idea of consciousness requiring complex neuronal processes is becoming rapidly outdated as we observe patterns of thinking in organisms that, according to classical definitions, really should not be able to. Using the slime mould as an example, Sims and Kiverstein (2022) argue against the ‘neurocentric’ assumption that an organism must have a brain to be cognisant. Instead, P. polycephalum is suggested to exhibit spatial memory, with cognition being suggested to sometimes include external elements (3). They showed it may undergo simple, habitual learning and hypothesised it uses an oscillation-based mechanism within the cell (3). Similarly, oscillator units along the slime mould’s extending tendrils oscillate at a higher frequency at higher concentrations of food source molecules (like some tasty glucose), signalling to the slime mould to move in that direction (4). Sims and Kiverstein (2022) also posit that the slime trail left by slime mould could function as an external memory mechanism. They found that P. polycephalum avoids slime trails as they represent places it has already been; suggesting a method of spatial memory (4). This was further proved as not a pure input-output response by showing that the avoidance response could be overridden when food is placed on or near slime trails (5). They suggest that the slime mould was able to balance multiple inputs, including oscillation levels and slime trail signals, exhibiting simple decision-making. Should we count these processes as thinking ? This topic is debated by philosophers as much as biologists. Sims and Kiverstein (2022) use the Hypothesis of Extended Cognition, being that mind sometimes extends into the environment outside of the brain and body, to argue firmly that it does count. But at the end of the day, despite understanding the chemical and electrical processes between neurons signalling and the cellular makeup of the brain, we still don’t understand how electrical signals through a series of axons make the leap to complex consciousness. Rudimentary and external cognition pathways, as seen with the slime mould, may also be an evolutionary link in the building blocks to more complex, nerve-based consciousness and decision making (3). We don’t yet understand the phenomena inside our own skulls—how can we hope to define it across all other organisms? Slime moulds clearly have something beyond simple chemical reactions. This begs the question: Aren't our own minds also fundamentally just made of simple chemical reactions? And if a slime mould is able to evaluate multiple inputs, how wonderfully complex must such processes be inside (and outside) a sea anemone, a cockroach or a cat? There’s no way to know what such a consciousness would look like or feel like to our frame of reference. When a slime mould, moving as a network around an agar plate, ‘looks up’ (or an equivalent slime mould action) and perceives unfathomable entities, how does it process that? What does the slime mould think of us? Bibliography 1. Kay R, Mattacchione A, Katrycz C, Hatton BD. Stepwise slime mould growth as a template for urban design. Sci Rep. 2022 Jan 25;12(1):1322. 2. Saigusa T, Tero A, Nakagaki T, Kuramoto Y. Amoebae Anticipate Periodic Events. Phys Rev Lett. 2008 Jan 3;100(1):018101. 3. Sims M, Kiverstein J. Externalized memory in slime mould and the extended (non-neuronal) mind. Cognitive Systems Research. 2022 Jun 1;73:26–35. 4. Reid CR, Latty T, Dussutour A, Beekman M. Slime mold uses an externalized spatial “memory” to navigate in complex environments. Proc Natl Acad Sci U S A. 2012 Oct 23;109(43):17490–4. 5. Reid CR, Beekman M, Latty T, Dussutour A. Amoeboid organism uses extracellular secretions to make smart foraging decisions. Behavioral Ecology. 2013 Jul;24(4):812–8. Previous article Next article Enigma back to
- Building the Lightsaber | OmniSci Magazine
< Back to Issue 2 Building the Lightsaber Some of the most iconic movie gadgets are the oldest ones. For this issue we look at how the lightsaber was brought to life. by Manthila Ranatunga 10 December 2021 Edited by Sam Williams and Tanya Kovacevic Illustrated by Rohith S Prabhu Star Wars : A New Hope was a massive success when it hit cinemas back in 1977. It was a groundbreaking sensation in the field of science fiction movies and computer generated imagery (CGI) in films. What really caught many fans’ eyes was, of course, the lightsaber. Also referred to as a “laser sword”, it is described as “an elegant weapon, for a more civilised age”. Now in our civilised age, we have decided to replicate this dangerous weapon. Lightsabers have already been built by a few enthusiasts. For this piece, we will be focusing on Hacksmith Industries’ lightsaber build from 2020 , as it is the closest to the real deal. Fig. 1. “Hacksmith Industries’ latest lightsaber build”, Hacksmith Industries, 4000° PLASMA PROTO-LIGHTSABER BUILD, 2020. Hacksmith Industries was founded by James Hobson, an engineer who builds real-life versions of film and video game gadgets. After multiple attempts, the team managed to fabricate a retractable, plasma-based lightsaber. However, this is not a real lightsaber, but more-so a protosaber in the Star Wars universe. We will get back to this point later on. How do they work? Let us first talk about how lightsabers work in the movies. A lightsaber consists of three parts: the hilt, the Kyber crystal and the blade itself. Similar to a traditional sword, the hilt is the handle and is made of a durable metal such as aluminium. It contains the Kyber crystal, which is a rare crystal found in the Star Wars universe and is the power source of the lightsaber. Moving onto the more interesting part, the blade is a beam of plasma. Often called “the fourth state of matter”, it is created by heating gas up to temperatures as high as 2,500 degrees celsius. A battery inside the hilt activates the crystal. The produced plasma is then focused through a lens and directed outwards. An electromagnetic field, essentially a force field, generated at the hilt contains the plasma in a defined beam and directs it back into the hilt. The crystal absorbs the energy and recycles it. Hence lightsabers are extremely energy-efficient, allowing Jedi Knights to use them for their whole lifetimes. Fig. 2. Robert W. Schönholz, Blue Lightsaber, c.2016. Of course, the lightsaber breaks the laws of physics. Electromagnetic fields do not work as they do on fictional planets like Coruscant. Energy-dense power sources such as Kyber crystals do not exist in real life, which leads us to the protosaber. In Star Wars lore, a protosaber is a lightsaber with an external power source. It was the predecessor to the lightsaber when Kyber crystals could not be contained inside the hilt. Since real-life high energy sources cannot be squished into the hilt, Hacksmith Industries' lightsaber build is reminiscent of the early protosaber. The build The engineers at Hacksmith Industries settled on liquefied petroleum gas (LPG) as the power source, the same gas used for home heating systems and barbecues. This gas is fed through the brass and copper hilt, and is burnt continuously to keep producing plasma. To form the beam shape of the blade, they incorporated laminar flow of gas. Ever seen videos of “frozen” water coming out of taps like this ? Laminar flow occurs when layers of fluid molecules, in this case LPG, flow without mixing. In this instance, a smooth beam is created. Unlike actual lightsabers, the beam does not return to the hilt to be absorbed. Of course, to be a lightsaber, it has to function like one, too. The plasma is extremely hot, reaching up to 2,200 degrees celsius. Therefore, it can cut through metal and other objects much like we see in the movies. This also means contact with the blade can lead to serious or even fatal injuries. The external power supply is in the form of a backpack, with mounted LPG canisters and electronics for assistance. Overall, the build looks, feels and works like a real lightsaber, which makes it a pretty accurate replica. However, we do not have the Force or ancient Jedi wisdom, so there are some notable imperfections in the design. Fig. 3. “Finished lightsaber build”, Hacksmith Industries, 4000° PLASMA PROTO-LIGHTSABER BUILD, 2020. Colours Lightsabers come in a variety of colours, each reflecting the wielder's moral values in Star Wars canon. Blue, for example, represents justice and protection. Green, blue and red are the most commonly seen in the movies, but lightsabers also come in purple, orange, yellow, white and black. If you did high school science, you may remember mixing bunsen burner flames with salts to produce colours. The same principle applies here; salts can be mixed in with plasma to colour the blade. For example, Strontium Chloride gives a red colour, so you can finally live out your Sith fantasies. Fig. 4. “Lightsaber colours by mixing salts”, Hacksmith Industries, 4000° PLASMA PROTO-LIGHTSABER BUILD, 2020. Improvements The downside of using plasma is that we cannot fight with it. Blades would pass right through each other without clashing. To fix this, a metal rod that can withstand high temperatures, such as Tungsten, could form the blade with a beam of plasma around it. However, this means the lightsaber would not be retractable, which defeats the purpose. To keep the blade coloured, salts have to be continuously fed through the hilt. This can be done with another pressurised canister along with the LPG, although it requires extra space. Despite the imperfections, the protosaber by Hacksmith Industries is the closest prototype to a real-life lightsaber. With constantly evolving technology, we will be able to build a more compact model that more closely resembles those in the movies. Makers all around the world are building cool movie gadgets like the lightsaber, so keep a lookout for your favourite ones. You never know what the nerds may bring! References 1. Amy Tikkanen, “Star Wars”, Britannica, published April 10, 2008, https://www.britannica.com/topic/Star-Wars-film-series. 2, 4, 7. Hacksmith Industries, “4000° PLASMA PROTO-LIGHTSABER BUILD (RETRACTABLE BLADE!)”, October 2020, YouTube video, 18:15, https://www.youtube.com/watch?v=xC6J4T_hUKg. 3. Joshua Sostrin, “Keeping it real with the Hacksmith”, YouTube Official Blog (blog), November 12, 2020, https://blog.youtube/creator-and-artist-stories/the-hacksmith-10-million-subscribers/. 5. Daniel Kolitz, “Are Lightsabers Theoretically Possible?”, Gizmodo, published August 10, 2021, https://www.gizmodo.com.au/2021/08/are-lightsabers-theoretically-possible/. 6. Richard Rogers, “Lightsaber Battery Analysis”, Arbin Instruments: News, published October 3, 2019, https://www.arbin.com/lightsaber-battery-analysis/. 8. Phil Edwards, “Star Wars lightsaber colors, explained”, Vox, published May 4, 2015, https://www.vox.com/2015/5/31/8689811/lightsaber-colors-star-wars. Previous article back to DISORDER Next article
- Peaks and Perspectives: A Word from the Editors-in-Chief | OmniSci Magazine
Issue 7: Apex 22 October 2024 This issue surveys our world from above. So come along, and revel in the expansive view - have a read below! Editorial Peaks and Perspectives: A Word from the Editors-in-Chief by the Editors-in-Chief A word from our Editors-in-Chief. Corals A Coral’s Story: From thriving reef to desolation by Nicola Zuzek-Mayer Nicola sheds light on the devastating future faced by our coral reefs, with the effects of anthropogenic climate change far from having reached its peak. Humans vs Pathogens Staying at the Top of Our Game: the Evolutionary Arms Race by Aizere Malibek As nations vie for military supremacy, Aizere covers a microscopic competition between humans and the microbes evolving strategies against our defences. Seeing Space Interstellar Overdrive: Secrets of our Distant Universe by Sarah Ibrahimi Embark on an epic journey as Sarah explores the cosmic mysterious being revealed by NASA's James Webb Space Teloscope. Fossil Markets Fossil Markets: Under the Gavel, Under Scrutiny by Jesse Allen Diving into the wild world of fossil auctions, Jesse prompts us to ask: who is the real apex predator, the T-rex or hedge-fund billionaires? Cancer Treatments Tip of the Iceberg: An Overview of Cancer Treatment Breakthroughs by Arwen Nguyen-Ngo Icebreakers. Follow Arwen as she recounts the countless stories of the giants before us, who carved a path for our cancer research today. Triangles Pointing the Way: A Triangular View of the World by Ingrid Sefton Guiding us through land, seas and screens, Ingrid explores this humble 3-sided shape as a vital tool of modern society and its many fascinating uses. Anti-ageing Science Timeless Titans: Billionaires defying death by Holly McNaughton From billionaire-backed pills to young blood transfusion, Holly traverses the futuristic world of anti-ageing and asks: what happens when death is no longer inevitable? Brain-computer Implants Neuralink: Mind Over Matter? by Kara Miwa-Dale Would the ability to control a computer with your mind bolster possibilities or bring harm? Kara visualises a possible future under the Neuralink implant. Fish Morphology Designing the perfect fish by Andy Shin With a splash of creativity, Andy concocts the ultimate 'Frankenfish' by investigating the traits that allow fish to flourish in their aquatic environments. Commercial Aviation Soaring Heights: An Ode to the Airliner by Aisyah Mohammad Sulhanuddin Settle in and take a round trip with Aisyah through the evolution of commercial aviation, from the secrets of aircraft cuisine to the mechanics of staying afloat.
- ISSUES | OmniSci Magazine
Issues Check out all our issues of OmniSci Magazine! Cover: Anabelle Dewi Saraswati 28 October, 2025 READ NOW Issue 8 Cover: May Du 3 June, 2025 READ NOW Issue 7: Apex Cover: Ingrid Sefton 22 October, 2024 READ NOW Issue 6: Elemental Cover: Louise Cen 28 May, 2024 READ NOW Issue 5: Wicked Cover: Aisyah Mohammad Sulhanuddin 24 Oct, 2023 READ NOW ISSUE 4: MIRAGE Cover: Gemma van der Hurk 1 July, 2023 READ NOW ISSUE 3: ALIEN Cover: Ravon Chew September 10, 2022 READ NOW SUMMER ISSUE 2022: A Year In Science Cover: Quynh Anh Nguyen March 23, 2023 READ NOW ISSUE 2: DISORDER Cover: Janna Dingle December 10, 2021 READ NOW ISSUE 1: Science is Everywhere Cover: Cheryl Seah December 24, 2021 READ NOW








