Search Results
127 results found with an empty search
- Thinking Outside the Body: The Consciousness of Slime Moulds | OmniSci Magazine
< Back to Issue 8 Thinking Outside the Body: The Consciousness of Slime Moulds by Jessica Walton 3 June 2025 Edited by Han Chong Illustrated by Ashlee Yeo Imagine yourself as an urban planner for Tokyo’s public transport system in 1927. Imagine mapping out the most efficient paths through dense urban sprawl, around obstructing rivers and mountains. And imagine meticulously designing the most efficient possible model, after years of study and expertise… only to find your design prowess, 83 years later, matched by a slime mould: a creature with no eyes, no head nor limbs, nor nervous system. Of course, this is anachronistic. For one, the Tokyo railroad system developed over time, not all at once. But it was designed to meet the needs of the city and maximise efficiency. Yet in 2010, when researchers exposed the slime mould Physarum polycephalum to a plate mimicking Tokyo city (with population density represented by oat flakes) it almost exactly mimicked the Tokyo railroad system (1). This became one of the most iconic slime mould experiments, ushering in a flood of research about biological urban design asking the question: Could a slime mould, or other similar organisms, map out human cities for us? But a slime mould doesn’t know what cities are. They’re single-celled organisms; they don’t understand urban planning, or public transport, or humans. They are classified as protists, largely because we’re not sure how else to categorise them, not because they’re particularly ‘protist-y.’ They have no brain and are single-celled for most of their life; so they can’t plan routes, have preferences, or make memories. Right? Except, perhaps they can. Slime moulds are extremely well-studied organisms because they exhibit precisely these behaviours. But how do they think? And what does it mean— to think ? Slime moulds have evidenced memory and learning. The protoplasm network they form is really just one huge cell that eventually develops into a plasmodium, growing and releasing spores. While plasmodial slime moulds (like P. polycephalum ) do this during reproduction, cellular slime moulds (dictyostelids) are able to aggregate together into one cell like this when food is scarce or environments are difficult (meaning they must be able to detect and evaluate if these things are true). Most slime mould behaviour is understood through cell signalling and extracellular interaction mechanisms; responding to chemical gradients using receptors along their membrane, which signal to the cells to move up the concentration gradient of a chemoattractant molecule and away from a chemorepellent. This makes sense; bacteria (like almost every other living organism) do this all the time and it’s the chief way that they make decisions . But what about memory and preferences? What about stimuli beyond the immediate detected chemicals? Slime moulds can, for example, anticipate repeated events and avoid simple traps to reach food hidden behind a U-shaped barrier (2,3). These are beyond input-to-output; something more complex must be happening. Something conscious? Thinking ? The idea of consciousness requiring complex neuronal processes is becoming rapidly outdated as we observe patterns of thinking in organisms that, according to classical definitions, really should not be able to. Using the slime mould as an example, Sims and Kiverstein (2022) argue against the ‘neurocentric’ assumption that an organism must have a brain to be cognisant. Instead, P. polycephalum is suggested to exhibit spatial memory, with cognition being suggested to sometimes include external elements (3). They showed it may undergo simple, habitual learning and hypothesised it uses an oscillation-based mechanism within the cell (3). Similarly, oscillator units along the slime mould’s extending tendrils oscillate at a higher frequency at higher concentrations of food source molecules (like some tasty glucose), signalling to the slime mould to move in that direction (4). Sims and Kiverstein (2022) also posit that the slime trail left by slime mould could function as an external memory mechanism. They found that P. polycephalum avoids slime trails as they represent places it has already been; suggesting a method of spatial memory (4). This was further proved as not a pure input-output response by showing that the avoidance response could be overridden when food is placed on or near slime trails (5). They suggest that the slime mould was able to balance multiple inputs, including oscillation levels and slime trail signals, exhibiting simple decision-making. Should we count these processes as thinking ? This topic is debated by philosophers as much as biologists. Sims and Kiverstein (2022) use the Hypothesis of Extended Cognition, being that mind sometimes extends into the environment outside of the brain and body, to argue firmly that it does count. But at the end of the day, despite understanding the chemical and electrical processes between neurons signalling and the cellular makeup of the brain, we still don’t understand how electrical signals through a series of axons make the leap to complex consciousness. Rudimentary and external cognition pathways, as seen with the slime mould, may also be an evolutionary link in the building blocks to more complex, nerve-based consciousness and decision making (3). We don’t yet understand the phenomena inside our own skulls—how can we hope to define it across all other organisms? Slime moulds clearly have something beyond simple chemical reactions. This begs the question: Aren't our own minds also fundamentally just made of simple chemical reactions? And if a slime mould is able to evaluate multiple inputs, how wonderfully complex must such processes be inside (and outside) a sea anemone, a cockroach or a cat? There’s no way to know what such a consciousness would look like or feel like to our frame of reference. When a slime mould, moving as a network around an agar plate, ‘looks up’ (or an equivalent slime mould action) and perceives unfathomable entities, how does it process that? What does the slime mould think of us? Bibliography 1. Kay R, Mattacchione A, Katrycz C, Hatton BD. Stepwise slime mould growth as a template for urban design. Sci Rep. 2022 Jan 25;12(1):1322. 2. Saigusa T, Tero A, Nakagaki T, Kuramoto Y. Amoebae Anticipate Periodic Events. Phys Rev Lett. 2008 Jan 3;100(1):018101. 3. Sims M, Kiverstein J. Externalized memory in slime mould and the extended (non-neuronal) mind. Cognitive Systems Research. 2022 Jun 1;73:26–35. 4. Reid CR, Latty T, Dussutour A, Beekman M. Slime mold uses an externalized spatial “memory” to navigate in complex environments. Proc Natl Acad Sci U S A. 2012 Oct 23;109(43):17490–4. 5. Reid CR, Beekman M, Latty T, Dussutour A. Amoeboid organism uses extracellular secretions to make smart foraging decisions. Behavioral Ecology. 2013 Jul;24(4):812–8. Previous article Next article Enigma back to
- Bionics: Seeing into the Future | OmniSci Magazine
Exciting technological leaps are being made in the futuristic field of visual prostheses. Australians suffering from visual impairment can be helped by emerging treatments including Bionic Eyes: a sight for sore eyes. This piece takes a look at the prevalent impairments and our ocular opportunities to treat them. Bionics: Seeing into the Future By Joshua Nicholls While the Bionic Eye might seem like a technology of the far future, exciting advancements are being made in the field of visual prostheses. This piece points a keen eye at emerging treatments for some of the most prominent diseases, along with their possible bionic treatments. Issue 1: September 24, 2021 Illustration by Friday Kennedy Visual prostheses, colloquially known as bionic eyes, are a set of experimental devices designed to restore — or partially restore — vision to those with varying levels of blindness (1). While once viewed as “science fiction”, these technologies are becoming a reality for thousands of Australians with visual impairments. Since its inception in 1956 by the Australian inventor Graham Tassicker (2), the idea of restoring vision using electronics has undergone several developments, ranging from rudimentary cortical stimulation to modern advancements in state-of-the-art retinal implants. As of 2018, it was estimated that over 13 million Australians have some form of visual impairment. Of these 13 million, 411,000 have cataracts or the clouding of the lens; 244,00 have macular degeneration, which degrades fine detail vision; and 133,000 are either partially or entirely blind (3,4). The economic burden of blindness in Australia is substantial. In 2009, it was estimated that the total cost of vision loss per person aged 40 and over was $28,905 — a nationwide total of 16.6 billion AUD (5). Figure 1: Categorisation of Total Economic Cost of Vision Loss in 2009 (5) Age-related macular degeneration (AMD) is one condition for which visual prosthetics may be applicable. AMD refers to the irreversible loss of high-acuity, colour-sensitive cone cells in the centre field of vision. This structure of the retina is responsible for reading, recognising faces, driving, and other visual tasks that require sharp focal vision. In fact, you are using these cells to read this article right now. Its typical onset is later in life, affecting 12% of people aged 80 or over (6). As the leading chronic eye condition for elderly Australians (7), it accounts for 48% of all cases of blindness nationwide (8). According to AIHW4, there is also a higher prevalence amongst females than in males — between 4.9%–6.8% and 3.6–5.1%, respectively. Macular degeneration exists in two forms: dry and wet. Dry macular degeneration is caused by thinning of the macula; it is the most common form of the disease and progresses slowly over many years. Wet macular degeneration is a potentially more severe variation of the disease which is caused by the sudden development of leaky blood vessels around the macula (9). With no known cure — and most treatments being directed towards prevention and delaying progression — interventions relying on prosthetics may be the best hope for the restoration of lost eyesight (10). Graham Tassicker was the first to realise the potential utility of cortical stimulation in restoring sight to those with vision loss. In 1956, Tassicker developed a photosensitive selenium cell which, when placed behind the retina, resulted in phosphene visualisation — the phenomenon of seeing light without light actually entering the eye (2). This was the first evidence of non-cortical stimulation to elicit visual experience. It was in the 1990s that visual prostheses took a radical development; sophisticated retinal surgeries and the creation of biomaterials led to a surge of novel inventions, including cortical implant miniaturisation and artificial retinas — the latter of which is the most advanced to date. There is currently a state-of-the-art retinal bionic system that has recently undergone clinical trial research: the Argus II Retinal Stimulation System. The Argus is an epiretinal (above the retina) implant which has been designed by SecondSight; as of 2013, it was FDA approved for retinitis pigmentosa (RP) but has potential utility for dry AMD. It consists of a device that is implanted in the patient’s eye and an external processing unit worn by the user. The system consists of sixty electrodes, each of which is two-hundred-micrometres in diameter. Images that have been captured by a small camera on glasses are converted into electrical impulses to stimulate surviving ganglion cells on the retina. It is currently the most widely used retinal prosthetic system in the world, with more than 350 RP patients being treated to date. The cost of this device is 150,000 USD — a price that excludes surgery and post-operative training (11). Figure 2: The design of the Argus II (12) In 2015, a case study was performed by the Argus II study group on the impact the implant would have on restoring visual function to subjects who had complete blindness from RP. The results from this study were quite promising; it showed that of the 30 patients who received the Argus II system, all significantly performed better on a white square test than they did without the prosthesis. (None of the subjects scored any points with the device absent.) The Argus also showed reliability for 29 subjects, all of whom still had functioning devices after three years (13). In 2020, a clinical trial of this device for dry AMD was completed. The study, which consisted of five patients, assessed the safety and feasibility of the device. According to Mills et al. (14), no patients reported confusion when operating the Argus alongside their healthy peripheral vision. Adverse events occurred in two patients who experienced proliferative vitreoretinopathy — or tractional retinal detachment. However, due to recent events surrounding the COVID-19 pandemic, the company declared that they would be performing “an orderly wind-down of the company’s operations”. SecondSight is now focusing on a new device: The Orion. This device is designed to stimulate the visual cortex of the brain — a return to the original conception of visual prosthetics. The Orion is planned to expand the pool of patients who are eligible for visual prosthetics. It will essentially bypass the requirement for healthy ganglion cells and a functioning optic nerve, which retinal prosthetics require. The only forms of blindness not encompassed by this technique are congenital forms of blindness or people who are ‘cortically blind’ from suffering damage to the visual cortex area V1. The Orion is modelled after the Argus II with its 60 cortical-stimulating electrodes receiving input from a camera on the user’s glasses. Under the Breakthrough Device Pathway, the FDA approved Orion for an early feasibility study. Six human subjects have been fitted with the device — one woman and five men between the ages of 29 and 57. Of these six, one had endophthalmitis, two had glaucoma, and three suffered trauma. After one year of wearing the device, four of the patients could accurately discern the location of a palm-sized white square on a computer screen, and five could locate its movement in space. The Orion has shown a good safety profile after 12 months of use, and follow-ups on its progress will occur for five years (15). Visual prostheses have a promising and bright future of development ahead of them. While it is still in its infancy, the results of ongoing clinical trials show promise for sight restoration. With multiple models and modes of intervention available, artificial vision is slowly becoming a reality for the visually impaired, but further developments in the field are still required. It would be promising to see advancements from mere two-dimensional grey-scale images to the rich, three-dimensional, and full-colour experience that we take for granted as normal vision. For now, two essential factors need to be improved for the full realisation of artificial vision: cost and electrode density. The Argus costs 150,000 USD — an expense that excludes surgery and training. This figure may be unfeasible for the thousands of Australians who would benefit from such a device. If the current trend of Moore’s Law continues, electrode density will increase whilst the cost of the device will decrease — a trend analogous to the increase in power and improved price of computers in the last century. This pixel density will hopefully improve to the point of achieving near-normal visual acuity. The 60 pixels, while helpful in regaining some functionality, cannot compare to the some 96 million photoreceptor cells in the retina — 5 million of which are located in the cone-dense macula. Nevertheless, artificial vision is an exciting and innovative technology currently under development. While much research is still needed, further advancements in bionics will one day make visual prosthetics a ubiquitous and affordable technology to those in need. About the writer: Joshua Nicholls was the 2021 winner of the Let's Torque competition. Joshua : I am a 5th-year neuroscience and biochemistry student at the Swinburne University of Technology. I finished my Health Science degree a few years ago, majoring in neuroscience. I am now completing my final few subjects in my Bachelor of Science, with biochemistry as my major. For the state-wide Let’s torque competition, I changed my pitch to artificial vision, hence its title, Bionics: Seeing into the Future—a catchy pun, if I do say so myself. I made the rather complex topic of visual prosthetics approachable and understandable to the general audience by, as stated previously, conveying a story. I asked my audience to consider losing vision, if not completely, at least partially. Considering this, I then asked them to imagine what life must be like for the some 13 million Australians of whom suffer from some form of visual impairment. This exercise brought home the very real phenomenon of visual impairment, which many of us have—or will—be impacted. The solution for currently untreatable vision loss is already underway: The Bionic Eye, as it is colloquially known. While it may sound like science fiction, bionics (or prosthetics) are nothing new; artificial hearing through the cochlear implant and artificial limbs are becoming rather ubiquitous. I briefly detailed a few diseases for which visual prosthetics may be appropriate, such as age-related macular degeneration and retinitis pigmentosa, and spoke about past and current clinical trials demonstrating their efficacy. To end my pitch, I talked about the lasting impact these devices will have on people’s lives and the future developments required. In doing so, I relayed the past, present, and future of the bionic eye, which detailed a coherent and relatable story to my audience. I was successful in my pitch and won first place among the state! It was an absolute privilege even to have been a part of this competition; coming first place was an added honour and will remain one of the highlights of my life. I believe this experience will serve as a footstone toward my career in science and science communication. If anyone has any desires to get their foot in the door of this field, get your name and face out there and just go for it! References: Ong, J. M., & da Cruz, L. (2012). The bionic eye: a review. Clinical & experimental ophthalmology, 40(1), 6-17. Tassicker, G. (1956). Preliminary report on a retinal stimulator. The British journal of physiological optics, 13(2), 102-105. Australian Bureau of Statistics. (2018). National Health Survey: First Results, 2017–18. Canberra: ABS Retrieved from https://www.abs.gov.au/statistics/health/health-conditions-and-risks/national-health-survey-first-results/latest-release Australian Institute of Health and Welfare. (2021). Eye health. Canberra: AIHW Retrieved from https://www.aihw.gov.au/reports/eye-health/eye-health Taylor, P., Bilgrami, A., & Pezzullo, L. (2010). Clear focus: The economic impact of vision loss in Australia in 2009. Vision2020. Retrieved from https://www.vision2020australia.org.au/wp-content/uploads/2019/06/Access_Economics_Clear_Focus_Full_Report.pdf Mehta, S. (2015). Age-related macular degeneration. Primary Care: Clinics in Office Practice, 42(3), 377-391. Foreman, J., Xie, J., Keel, S., van Wijngaarden, P., Sandhu, S. S., Ang, G. S., . . . Taylor, H. R. (2017). The prevalence and causes of vision loss in Indigenous and non-Indigenous Australians: the National eye health survey. Ophthalmology, 124(12), 1743-1752. Taylor, H. R., Keeffe, J. E., Vu, H. T. V., Wang, J. J., Rochtchina, E., Mitchell, P., & Pezzullo, M. L. (2005). Vision loss in Australia. Med J Aust, 182(11), 565-568. doi:10.5694/j.1326-5377.2005.tb06815.x Calabrese, A., Bernard, J.-B., Hoffart, L., Faure, G., Barouch, F., Conrath, J., & Castet, E. (2011). Wet versus dry age-related macular degeneration in patients with central field loss: different effects on maximum reading speed. Investigative ophthalmology & visual science, 52(5), 2417-2424. Cheung, L. K., & Eaton, A. (2013). Age‐related macular degeneration. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy, 33(8), 838-855. Luo, Y. H.-L., & Da Cruz, L. (2016). The Argus® II retinal prosthesis system. Progress in retinal and eye research, 50, 89-107. SecondSight. (2021). SecondSight: Life in a New Light. Retrieved from https://secondsight.com/ Ho, A. C., Humayun, M. S., Dorn, J. D., Da Cruz, L., Dagnelie, G., Handa, J., . . . Hafezi, F. (2015). Long-term results from an epiretinal prosthesis to restore sight to the blind. Ophthalmology, 122(8), 1547-1554. Mills, J., Jalil, A., & Stanga, P. (2017). Electronic retinal implants and artificial vision: journey and present. Eye, 31(10), 1383-1398. Pouratian N., Yoshor D., & Greenberg R. (2019). Orion Visual Cortical Prosthesis System Early Feasibility Study: Interim Results. Paper presented at American Academy of Ophthalmology Annual Meeting.
- Unpacking the latest IPCC report | OmniSci Magazine
The Greenhouse Unpacking the Latest IPCC Report - What Climate Science is Telling Us By Sonia Truong The most comprehensive climate science report to date, this sixth assessment report reveals the reality of climate change and stresses that we need to take action urgently. Edited by Jessica Nguy & Yen Sim Issue 1: September 24, 2021 Illustration by Jess Nguyen On the 9th of August 2021, the United Nations Intergovernmental Panel on Climate Change (IPCC) released its first instalment of the IPCC Sixth Assessment Report from Working Group I, Climate Change 2021 — The Physical Science Basis of Climate Change. The IPCC is one of the world’s leading authorities on climate change and its reports provide an important scientific framework for governments to develop climate policies. With the collaborative effort of 234 leading climate scientists and more than 1,000 contributors, the latest IPCC report provides the most up-to-date information about the scientific basis of climate change and the effects of human activity on Earth’s systems. The report can be found online — it features a ‘Summary for Policymakers’ document exploring key findings across four topic areas as well as a comprehensive ‘Full Report’ which assesses and compiles peer-reviewed literature on climate science from across the globe. The report also features the IPCC WGI Interactive Atlas which explores observed and projected regional climate changes across different emissions and warming scenarios. Three key takeaways from the IPCC report are described below. #1: Human activity has contributed to climate change It in unequivocal that human influence has warmed the atmosphere, ocean and land. Headline statement from the IPCC’s ‘Summary for Policymakers’, AR6 2021 Advancements in attribution studies have allowed scientists to better simulate Earth’s responses to natural and anthropogenic factors and estimate the extent of human influence on observed climate trends. For the first time, the IPCC report has been able to state with a very high level of certainty that anthropogenic factors have been the main driver of increasing temperature extremes since the mid-19th century. Figure SPM.1 shows that simulated natural factors do not come close to explaining the observed increase in global surface temperature since the mid-19th century. Figure SPM.1: A powerful comparison of changes in global surface temperature since 1850 with and without human factors. This figure shows that the effects of natural climate drivers on global warming have been negligible compared to human influence on the climate. IPCC AR6, ‘Summary for Policymakers’ Atmospheric greenhouse gas concentrations are higher than what they have been in the last two millennia and have been increasing at an unprecedented rate, mainly due to human activities in greenhouse gas combustion and deforestation. According to the report, greenhouse gas emissions from human activities have caused warming of approximately 1.1°C above pre-industrial average. In fact, human activities have caused enough emissions for even greater warming, but this has been partially counteracted by the cooling effect of aerosols in the atmosphere. Some recent heat extremes would have been virtually impossible without the influence of human forcing factors. Siberia’s prolonged heatwaves of 2020, for example, would have occurred less than once every 80,000 years without human-induced climate change. Moreover, the onset of Siberia’s wildfire season saw record-high temperatures throughout 2020 and 2021 as well as the burning of over 16 million hectares of land. Even in today’s climate, such extreme weather events are unlikely, but have been predicted to become more frequent by the end of this century. #2: Every region will experience environmental changes due to climate change The IPCC report states that the “widespread, rapid and intensifying” effects of climate change will be experienced by every region in a multitude of ways. Since the release of the last IPCC report in 2018, the world has observed an increase in acute weather events such as widespread flooding, storms, drought, fire weather and heatwaves. These are predicted to increase in frequency and severity as a result of human-induced climate change. Many changes in the climate system become larger in direct relation to increasing global warming. They include increases in the frequency and intensity of hot extremes, marine heatwaves, and heavy precipitation, agricultural and ecological droughts in some regions, and proportion of intense tropical cyclones, as well as reductions in Arctic sea ice, snow cover and permafrost. B.2 from the IPCC’s ‘Summary for Policymakers’, AR6 2021 Several environmental changes due to climate change are already irreversible. Notably, global sea level rise and ocean acidification are set in long-term motion and will proceed at rates which will depend on future emissions. Glacial retreat is occurring synchronously across the world and glaciers will continue to melt for decades or centuries. All emission scenarios within the 21st century described in the report have revealed that global temperature changes will exceed a 1.5ºC increase, even in the lowest emissions scenario (SSP1-1.9). Thus, warming will reach a critical level regardless of actions that the world takes now. We can, however, prevent further temperature increases with deep reductions in global greenhouse gas emissions (especially carbon dioxide and methane). Figure SPM.5: All regions of the world (with one exception) will experience warming as a result of climate change, although not at an equal level. IPCC AR6, ‘Summary for policymakers’ Environmental changes at a 2ºC warming will be more pronounced and widespread, and extremes are likely to exceed critical tolerance thresholds in human health, ecological systems and agriculture. Australia, in particular, is vulnerable to experiencing scarce water resources in drought-prone areas and flooding and landslide events due to heavy rainfall events. Australia’s coastlines are also prone to erosion and flooding from rising sea levels and extreme meteorological events. The IPCC report examines evidence for climate ‘tipping points’ which, due to uncertainty about the Earth’s feedback systems, “cannot be ruled out” in climate projections. These tipping points are key thresholds that will lead to large-scale and irreversible damages to the Earth’s systems if breached. One of these tipping points is the loss of the Greenland ice sheet which is melting at an unprecedented rate. Surface melt of this major ice sheet involves a number of positive feedback loops which exacerbate the melting as the ice surface gets darker and less reflective of solar radiation. Scientists warn that, while highly unlikely, there is a possibility that we will reach a tipping point with current warming trends. #3: We need to make drastic reductions in greenhouse gas emissions immediately The Sixth Assessment Report tells us, with greater certainty than ever before, that human activities over the past six decades have caused global warming trends and affected climate extremes globally. These trends are likely to continue on a long-term scale. Most importantly, the report stresses that if we want any chance of limiting global temperature rise to 1.5ºC above pre-industrial levels, we must urgently make strong, sustained reductions in global greenhouse gas emissions. The current global carbon budget to remain below 1.5ºC warming is estimated to be at an additional 500 billion tonnes of greenhouse gas. To remain within this budget, we need to achieve net zero carbon dioxide emissions by 2050. Reductions in greenhouse gas emissions will only be achieved with meaningful climate action. If we can drastically reduce emissions now, we will still have a chance of averting the climate crisis. The two succeeding instalments of the IPCC Sixth Assessment Report will cover the impacts of climate change and mitigation of climate change and are planned to be released in 2022. References: IPCC, 2021: Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [MassonDelmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press. In Press.
- Where The Wild Things Were | OmniSci Magazine
Where The Wild Things Were By Ashleigh Hallinan We may consider ourselves to be the most advanced species on the planet, but this has come at the cost of the natural world. Delve into this article to gain insight into how ecosystem restoration plays a role in nature-based solutions for biodiversity loss and climate change mitigation globally. Edited by Niesha Baker & Caitlin Kane Issue 1: September 24, 2021 Illustration by Jess Nguyen The scale of threats posed to humanity and the natural world is confronting and difficult to grasp. The natural world is being pushed towards its brink, but it’s not too late to act. Ecosystem restoration plays an important role in nature-based solutions for biodiversity loss, food insecurity, and climate change. Global discourse and action also need to continue moving towards greater acknowledgement of Traditional Owners and local communities in biodiversity conservation efforts and climate change resilience. Ecosystem degradation is an accelerating calamity of our own making. A recent study from Frontier Forest and Global Change shows that humans have altered 97 per cent of the Earth's land, meaning a mere 3 per cent of land remains untouched, or ‘ecologically intact’ (1). ‘Ecosystem degradation’ refers to the loss of natural productivity from environments as a result of human activity. Many of the world’s ecosystems have been pushed beyond the point of unassisted self-recovery due to a mix of stressors, most of which are human-induced. Ecosystems are made up of interacting organisms and the physical environment in which they are found, so disturbing the balance of an ecosystem can be disastrous for all the living things relying on it, including humans. If trends of ecosystem degradation continue, 95 per cent of the Earth’s land could become degraded by 2050 (2). In this scenario, we would face irreversible damage. But how does this affect you and me? Beyond the role ecosystem degradation plays in accelerating climate change and the loss of countless species from our planet, its impact on ecosystem services is also of great significance. Ecosystem services are the benefits humans derive from the natural environment. These range from the oxygen we breathe to aesthetic appreciation of the natural environments around us. These services are necessary for life to exist on Earth, and without them, our quality of life would decline drastically. Luckily for us, humans are capable of learning from their mistakes, and efforts are being made to address these global concerns. Ecosystem restoration is the process of reversing ecosystem degradation to regain environmental health and sustainability. This often involves re-introducing plant and animal populations that may have been lost, as well as restoring their habitats. Abandoned farmland is one example of where this can be achieved. Farmlands are one of the most vital ecosystems in sustaining humankind. Not only do they provide us with food, but they are also home to a variety of organisms within and above the soil. Many of these organisms play a critical role in soil health, which is essential for agriculture. Agriculture has transformed human societies and fuelled a global population that has grown from one billion to almost eight billion people since around 1804 (3). This has had significant consequences on natural systems worldwide, particularly as farmland has continuously expanded into surrounding landscapes. Agroecosystems now cover around 40 per cent of Earth's terrestrial surface (4). However, despite a growing demand for food due to the world’s rapidly increasing population, the amount of farmland being abandoned outweighs the amount of land being converted to farmland (5). There are an estimated 950 million to 1.1 billion acres of deserted farmland globally (6). This unproductive farmland could be converted to meet conservation goals and mitigate the impacts of climate change. For example, farmland could be regenerated with carbon-capturing forests. These would contribute to sequestering large amounts of anthropogenic CO2, water retention, soil fertility, and providing habitats for a variety of organisms. Abandoned farmland could also be re-established with native vegetation to provide habitats for animals. This was the case at the Monjebup Nature Reserves, located in south-west Western Australia (WA) on Noongar Country, established by Bush Heritage Australia between 2007 and 2014 (7). Despite being a biodiversity hotspot, animals and plants in the Monjebup Nature Reserves have faced many threats. These were mainly in the form of introduced species and land clearing for agriculture. Decades of land clearing resulted in a transition from deep-rooted woody vegetation systems to shallow-rooted annual cropping systems across the south-western Australian landscape. This caused a decrease in natural habitats and accumulation of salt in soil and water, which contributed significantly to biodiversity loss. In 2007, Bush Heritage Australia secured the Monjebup Nature Reserves in a bid to establish important conservation areas. Since then, they have restored nearly 1,000 acres of cleared land in the north of the Reserve (8). An important contributor to the success of this project was Indigenous knowledge, which reflects a long history of close connection with the land. These unique human-land relationships provide opportunities for learning in environmental research, particularly regarding land management and sustainability. The Monjebup Nature Reserves now protect a significant patch of native bushland on the land of the Noongar-Minang and Koreng people. This has been critical in restoring the heavily cleared landscape between WA's Stirling Ranges and Fitzgerald River National Parks, reconnecting remnant bush in the south with that of the Corackerup Nature Reserve further north. It has also provided habitat for vulnerable animal species such as the Malleefowl, Western Whipbird, Carnaby's Cockatoo, and Tammar Wallaby. Local knowledge plays a critical role in re-introducing plants and animals by identifying species suitable to particular environments. In the Monjebup Nature Reserves, re-introduction of native plants involved research on local plant communities and soil conditions in immediately surrounding areas. This research also involved communication with Traditional Owners who had used the area for gathering raw materials, food processing, hunting, stone tool manufacturing, and seasonal movement over millennia (9). Seeds of suitable flora were then collected in and around the site for the restoration works. It is crucial that consultation with Traditional Owners, like that seen in the Monjebup Nature Reserves project, becomes a more common practice. An estimated 37 per cent of all remaining natural lands are under Indigenous management (10). These lands protect 80 per cent of global biodiversity and the majority of intact forests, highlighting the value of Indigenous knowledge (11). We have left ourselves a challenging yet attainable goal. Raising public awareness on the importance of ecosystems and improving our knowledge on the interconnectedness of the natural world will be key to decreasing our impacts on Earth's incredible ecosystems. In March 2019, the United Nations General Assembly announced 2021 to 2030 as the Decade on Ecosystem Restoration (12). El Salvador’s Minister of Environment and Natural Resources, Lina Pohl, proposed the creation of the Decade in a speech to the General Assembly. More than 70 countries from all latitudes quickly jumped on board, committing to safeguarding and restoring ecosystems globally (13). 2030 also happens to be the deadline for the Sustainable Development Goals, which are a collection of 17 interlinked global goals designed to address the global challenges we face, and provide a ‘blueprint to achieve a better and more sustainable future for all’ (14). 2030 is also the year scientists have identified as the last chance to prevent catastrophic climate change (15). As part of the Decade on Ecosystem Restoration, the United Nations has called for countries to make the pledge to restore at least 2.5 billion acres of degraded land - an area larger than China (16). This will require international cooperation, led by the UN Environment Programme and the Food and Agriculture Organisation. Humans have an essential role in halting and reversing the damage that has been caused so far. Ecosystem restoration is not a quick or easy process. It requires deep, systematic changes to the economic, political, and social systems we currently have in place. But the natural world is finite, and it is important we continue taking steps towards a more sustainable future. References: 1. Plumptre, Andrew J., Daniele Baisero, R. Travis Belote, Ella Vázquez-Domínguez, Soren Faurby, Włodzimierz Jȩdrzejewski, Henry Kiara, Hjalmar Kühl, Ana Benítez-López, Carlos Luna-Aranguré, Maria Voigt, Serge Wich, William Wint, Juan Gallego-Zamorano, Charlotte Boyd . “Where Might We Find Ecologically Intact Communities?” Frontiers in Forests and Global Change 4 (15 April 2021): 1-13. https://doi.org/10.3389/ffgc.2021.626635. 2, 4. Scholes, Robert, L Montanarella, Anastasia Brainich, Nichole Barger. “The Assessment Report on Land Degradation and Restoration: Summary for Policymakers”. Bonn, Germany: Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES), 2018. https://ipbes.net/sites/default/files/2018_ldr_full_report_book_v4_pages.pdf 3. Food and Agriculture Organisation of the United Nations,“FAOSTAT”, Accessed 8 September 2021, http://www.fao.org/faostat/en/#home . 5, 6. Yang, Yi, Sarah E. Hobbie, Rebecca R. Hernandez, Joseph Fargione, Steven M. Grodsky, David Tilman, Yong-Guan Zhu, Yu Luo, Timothy M. Smith, Jacob M. Jungers, Ming Yang, Wei-Qiang Chen. “Restoring Abandoned Farmland to Mitigate Climate Change on a Full Earth”. One Earth 3, no. 2 (August 2020): 176–86. https://doi.org/10.1016/j.oneear.2020.07.019. 7, 8, 9. Bush Heritage Australia,“Monjebup Nature Reserves (WA),” Accessed 8 September 2021, https://www.bushheritage.org.au/places-we-protect/western-australia/monjebup . 10. Garnett, Stephen T., Neil D. Burgess, Julia E. Fa, Álvaro Fernández-Llamazares, Zsolt Molnár, Cathy J. Robinson, James E. M. Watson, Kerstin K.Zander, Beau Austin, Eduardo S. Brondizio, Neil French Collier, Tom Duncan, Erle Ellis, Hayley Geyle, Micha V. Jackson, Harry Jonas, Pernilla Malmer, Ben McGowan, Amphone Sivongxay, Ian Leiper. “A Spatial Overview of the Global Importance of Indigenous Lands for Conservation‘. Nature Sustainability 1, no. 7 (July 2018): 369–74. https://doi.org/10.1038/s41893-018-0100-6 . 11. Ogar, Edwin, Gretta Pecl, and Tero Mustonen. ‘Science Must Embrace Traditional and Indigenous Knowledge to Solve Our Biodiversity Crisis’. One Earth 3, no. 2 (August 2020): 162–65. https://doi.org/10.1016/j.oneear.2020.07.006. 12, 13, 14, 15. United Nations Environment Programme and the Food and Agriculture Organization of the United Nations, “About the UN Decade,” Accessed 8 September 2021, http://www.decadeonrestoration.org/about-un-decade . 16. United Nations Environment Management Group, “The UN Sustainable Development Goals – UN Environment Management Group”, Accessed 8 September 2021, https://unemg.org/our-work/supporting-the-sdgs/the-un-sustainable-development-goals/ .
- Three-Parent Babies? The Future of Mitochondrial Donation in Australia | OmniSci Magazine
< Back to Issue 5 Three-Parent Babies? The Future of Mitochondrial Donation in Australia Kara Miwa-Dale 24 October 2023 Edited by Yasmin Potts Illustrated by Aisyah Mohammad Sulhanuddin Mitochondria are the ‘powerhouse of the cell’. Sound familiar? This fact was likely drilled into you during high school biology classes (or by looking at memes). Beyond this, you may not have given mitochondria a second thought - but you should! This organelle has been at the centre of some heated parliamentary debates relating to mitochondrial donation. This new IVF technology, which aims to prevent women from passing on mitochondrial disease, will reshape Australia’s approach to genetic and reproductive technologies. Mitochondrial donation was legalised in Australia last year when ‘Maeve’s Law’ was passed in the Senate. This law reform has generated a minefield of social and ethical questions that are yet to be fully answered. What is mitochondrial disease? Mitochondria are the small but mighty structures found in all our cells (except red blood cells) that produce more than 90% of the energy used by our bodies (Cleveland Clinic, 2023). This organelle is vital for the functioning of important organs such as the heart, brain and liver (Cleveland Clinic, 2023). Mitochondria also have their own DNA, with a relatively small genome size of 37 genes (Garcia et al., 2017), compared to the 20,000 genes in our nuclear DNA (Nurk et al., 2022). Mitochondrial disease refers to a group of disorders in which ‘faulty’ mitochondria results in a range of symptoms such as poor motor control, developmental delay, seizures and cardiac disease (Mito Foundation, 2023). Half of the cases of mitochondrial disease are caused by mutations in mitochondrial DNA. These mutations are transmitted through maternal inheritance, which means that all the mitochondria in your cells are passed on from your biological mother (Mito Foundation, 2023). It is believed that about 1 in 200 people have a mutation in their mitochondrial DNA, with 1 in 5000 people having some form of mitochondrial disease (Mito Foundation, 2023). There is currently no cure for this group of conditions. How does mitochondrial donation work? Mitochondrial donation, also known as Mitochondrial Replacement Therapy (MRT), is an IVF technology which aims to prevent women from passing on mitochondrial disease to their children. For individuals with mitochondrial disease, this technology is currently the only way to have biological children without the risk of passing on their disease. MRT is used to create an embryo containing the nuclear DNA from two parents, in addition to mitochondrial DNA from an egg donor. This process involves taking the nuclear DNA from an embryo (created using the mother’s egg and father’s sperm) and inserting it into a donor egg which contains healthy mitochondria (NHMRC, 2023). The child will still inherit all of their unique characteristics, such as hair colour, through the nuclear DNA of their prospective parents. Therefore, it would be impossible to tell that an individual had been conceived through MRT simply by looking at them. Challenges in defining parenthood. Children conceived through MRT have been popularly referred to in the media as ‘three-parent babies’ since the technique creates an embryo containing DNA from three different individuals. However, this label is inaccurate and misleading. It suggests that all three parents make an equal contribution to the identity of the child, when in fact mitochondrial donors contribute only 0.1% of the child’s total genetic material. So, technically the term ‘2.002-parent babies’ would be more accurate! Under Australian law, mitochondrial donors will not have legal status as parents since their genetic contribution is not thought to influence the unique characteristics of the child. However, there are some concerns about the potential psychological impacts on children conceived through MRT, as the definition of parenthood is becoming increasingly blurry. It is possible that children conceived through mitochondrial donation will regard their mitochondrial donor as significant to their identity, considering how different their life may have looked without them. As researchers learn more about the function of mitochondria, we may indeed find that mitochondrial DNA has a greater influence on a person’s characteristics than we once thought. More recent studies have linked mitochondrial DNA to athletic performance (Maruszak et al., 2014), psychiatric disorders (Sequeira et al., 2012), and ageing (Wallace, 2010). Should mitochondrial donors remain anonymous? If mitochondrial donors contribute such a tiny amount of DNA to a child, and do not influence any of their personal characteristics, should they be obligated to disclose their identity to the recipient? Australia no longer allows egg or sperm donors to remain anonymous in order to protect the rights of individuals to know their biological origins. Yet, in the case of mitochondrial donation, there is a much smaller proportion of DNA involved. Some experts have compared mitochondrial donation to organ donation, in the sense that the donation also provides someone with the organ (or organelle) that enables them to live a healthy life, without altering their unique characteristics. It has therefore been argued that mitochondrial donation should be treated in a similar way to organ donation, allowing donors to remain anonymous. Considering that donated eggs are often in low supply, permitting anonymous donors may provide a way of improving the availability of donor eggs. It is likely that Australia will follow the lead of the UK by permitting anonymous donation. Are we ‘playing God’ by altering the genome? By making heritable changes to an individual’s genome, we are heading into new and potentially dangerous territory. Opponents of mitochondrial donation have voiced fears about the ‘slippery slope’ between trying to eradicate mitochondrial disease and taking this technology too far into the realm of ‘designer babies’. Considering that mitochondrial donation does not involve making any changes to nuclear DNA, and can only be used for medical reasons, these statements seem a bit sensationalist. However, there are some genuine reasons to be concerned about the safety of this technology and its implications for the future of humankind. While MRT is generally considered to be safe based on clinical research, there are still some uncertainties about its efficacy in clinical practice. For example, clinical research has found that there is a chance of ‘carry-over’ of unhealthy mitochondria during the MRT process (Klopstock, Klopstock & Prokisch, 2016). If this carry-over occurs, there is a potential for the numbers of unhealthy mitochondria to gradually increase as the embryo develops, essentially undoing all the hard work of creating an embryo free from mitochondrial disease. However, the percentage of carry-over is usually less than 2% and is likely to become lower as the technology advances (Klopstock, Klopstock & Prokisch, 2016). Unfortunately, we won’t know about any negative long-term impacts of MRT until we are able to observe the development of children conceived through this technology. However, adults over the age of 18 cannot be forced to participate in a study, which makes it more challenging to track long-term outcomes. An important consideration is the privacy and autonomy of these individuals - that they are not over-medicalised or viewed as some sort of ‘spectacle’ to the public. The future of mitochondrial donation in Australia. ‘Maeve’s Law’ was named in honour of Maeve Hood, a cheerful 7-year-old who was diagnosed with a rare mitochondrial disease at 18 months old. The law was passed with the aim of preventing the transmission of mitochondrial disease in Australia, which affects around fifty families each year. This revolutionary law permits the creation of a human embryo containing genetic material from three people and allows heritable changes to be made to the genome (although under strict guidelines). Such practices were previously illegal in Australia due to understandable concern that these technologies could be destructive in the wrong hands. Maeve’s Law introduces an exception to these prohibitions solely for the purpose of preventing serious mitochondrial disease. While MRT is no longer illegal in Australia, Maeve’s Law does not authorise the immediate use of MRT in clinical practice. The law outlines a two-stage approach in which the technology will be implemented, provided that clinical trials are successful. This initiative will be conducted by Monash University through the mitoHOPE (Healthy Outcomes Pilot and Evaluation) program, for which they received $15 million in funding (Monash University, 2023). Stage 1, which is expected to last around ten years, will involve clinical research aimed at improving MRT techniques and validating its safety. After an initial review, mitochondrial donation may become available in a clinical practice setting in Stage 2. Mitochondrial donation is an exciting technology which provides hope to the many Australians touched by the devastating effects of mitochondrial disease. However, it is important that more research is conducted into its safety and efficacy, as well as the long-term implications of its use. As is often the case with groundbreaking technologies such as this, the laws and policies lag behind the science. The passing of Maeve’s Law is only the start of what will be a long journey to the successful implementation of mitochondrial donation in Australia. The next ten years will be crucial in setting a precedent for how our society approaches the use of other novel genetic technologies in healthcare. The question is no longer ‘should we use mitochondrial donation?’ but ‘how can we implement this technology in a safe and ethical way?’ References Cleveland Clinic. (2023). Mitochondrial Diseases . https://my.clevelandclinic.org/health/diseases/15612-mitochondrial-diseases Garcia, I., Jones, E., Ramos, M., Innis-Whitehouse, W., & Gilkerson, R. (2017). The little big genome: The organization of mitochondrial DNA . Frontiers in Bioscience (Landmark Edition), 22, 710. Klopstock, T., Klopstock, B., & Prokisch, H. (2016). Mitochondrial replacement approaches: Challenges for clinical implementation . Genome Medicine, 8(1), 1-3. Maruszak, A., Adamczyk, J. G., Siewierski, M., Sozański, H., Gajewski, A., & Żekanowski, C. (2014). Mitochondrial DNA variation is associated with elite athletic status in the Polish population. Scandinavian Journal of Medicine & Science in Sports, 24(2), 311-318. Mito Foundation. (2023). Maybe Mito Patient Factsheet. https://www.mito.org.au/wp-content/uploads/2019/01/Maybe-Mito-Patient-Factsheet1.pdf Mito Foundation. (2023). Mitochondrial Disease: The Need For Mitochondrial Donation . https://www.mito.org.au/wp-content/uploads/2019/01/Brief-mitochondrial-donation-2.pdf Monash University. (2023). Introducing Mitochondrial Donation into Australia. The mitoHOPE Program. https://www.monash.edu/medicine/mitohope National Health and Medical Research Council. (2023). Mitochondrial Donation. https://www.nhmrc.gov.au/mitochondrial-donation Nurk, S., Koren, S., Rhie, A., Rautiainen, M., Bzikadze, A. V., Mikheenko, A., & Phillippy, A. M. (2022). The complete sequence of a human genome . Science, 376(6588), 44-53. Sequeira, A., Martin, M. V., Rollins, B., Moon, E. A., Bunney, W. E., Macciardi, F., & Vawter, M. P. (2012). Mitochondrial mutations and polymorphisms in psychiatric disorders. Frontiers in Genetics, 3, 103. Wallace, D. C. (2010). Mitochondrial DNA mutations in disease and aging. Environmental and Molecular Mutagenesis, 51(5), 440-450. Wicked back to
- Serial Killers | OmniSci Magazine
< Back to Issue 5 Serial Killers Selin Duran 24 October 2023 Edited by Yasmin Potts Illustrated by Aditya Dey Serial killers. Do we love them or hate them? It’s hard to know, especially as the media surrounding them is increasing. From fiction to nonfiction killers, our society is obsessed with giving a voice and perspective to these people. We have movies, documentaries, TV series and even Youtube videos accounting the lives and stories of killers. Despite this, people rarely stop to ask themselves why they enjoy this style of media - some of the most wicked and gruesome acts, glorified for the interest of many. Yet, every day we are met with new shows highlighting the life of coldblooded killers. But why are we interested in them? It’s mostly a morbid curiosity; as humans, we are drawn to crime. We want to know why people choose to kill and how they do it. Jack Haskins, a University of Tennessee journalism professor, noted that "humans [are] drawn to public spectacles involving bloody death...Morbid curiosity, if not inborn, is at least learned at a very early age " (UPI Archives, 1984). As a collective, we have always wanted to explore the horrid acts of those who kill. But it’s only with the help of modern media that people enjoy them. Media loves a good story - and what makes a good story? A crazy serial killer on the loose. One of the earliest movies about a serial killer is Fritz Lang's 1931 film M . Set in Berlin, the film details a killer who targets children. Since then, a downward spiral of fictional serial killer movies has taken society by storm. Being all the craze during the mid-80s and 90s, the highest amount of serial killer media were produced in this timeframe. One of the most popular works is director Alfred Hitchcock's iconic Psycho, which won eight Academy Awards (IMDb, 2021). What is truly disturbing is the story of this film. Norman Bates, our killer, is deemed mentally insane and suffers from Dissociative Identity Disorder. Through his personality changes, he proceeds to kill two people during the film, in addition to multiple murders not depicted. Yet, when he is jailed, we learn that his actions were the result of abuse he endured when he was younger. Suddenly, we're forced to feel sympathetic towards his situation. How can that be a reasonable justification towards murder, and why do we applaud the film for this? As a society, accepting murder based on mental insanity seems more than unreasonable - but no one has questioned it thus far. This unfortunately happens not only with fictional killers, but with nonfiction ones. Our interest in killers turns into a way to inform ourselves of these situations (Harrison, 2023). We look to these documentaries and podcasts that tell the stories of the most notorious serial killers to learn something and prevent the situation from happening to us. All whilst indulging in content that emphasises these killers as being regular people, not evil individuals, who committed crimes for personal pleasure. We don’t need to see a biopic about the ventures of Ted Bundy and Jeffery Dahmer. Yet the second you search their names on Google, an all-star cast portraying the life of a man who tortured their victims fills your screen. This is certainly not an ethical thing to endorse. Despite this, not a single person thinks twice about it due to how common it is. Directors are profiting off victims and as a society, we are allowing it because of our curiosity. What happened to compassion? Because I certainly believe we have lost it. We have become so infatuated with killers that their actions seem unimportant to us. We yearn to discover more about their lives and forget that real people were implicated in these events. These killer stories provide bursts of short-lived adrenaline and then we return to our normal lives. In forgetting the consequences of these real stories, we are in many ways as bad as the killers themselves. And that is truly wicked. References Harrison, M. A. (2023). Why Are We Interested in Serial Killers? Just as Deadly: The Psychology of Female Serial Killers . Cambridge: Cambridge University Press, 17–31. https://www.cambridge.org/core/books/just-as-deadly/why-are-we-interested-in-serial-killers/B35C2243B387273749EA164318C27623?utm_campaign=shareaholic&utm_medium=copy_link&utm_source=bookmark IMDb. (2021). Psycho (1960) - Awards . https://www.imdb.com/title/tt0054215/awards/ UPI Archives. (1984). Few answers on origin of morbid curiosity. UPI. https://www.upi.com/Archives/1984/04/07/Few-answers-on-origin-of-morbid-curiosity/7976450162000/#:~:text=%27Throughout%20human%20history%2C%20humans%20have Wicked back to
- On the Folklore of Fossils | OmniSci Magazine
< Back to Issue 5 On the Folklore of Fossils Ethan Bisogni 24 October 2023 Edited by Arwen Nguyen-Ngo Illustrated by Aisyah Mohammad Sulhanuddin We inhabit an incredible world, one shaped by the ancient mysteries of our past and the imaginative stories they inspire. Throughout human history, we have tried to comprehend the bigger picture - using mythology and science to explain the presence of any natural phenomena we can observe. Between the movement of the stars and shape of the land, most scientific explanations of our world share a fascinating mythical counterpart. One particular area of science that has been bestowed with some truly incredible folklore is palaeontology. A History of Palaeontology To best understand some of the amazing mythologies surrounding fossils, we should first briefly explore the history of modern palaeontology. Some of the earliest attempts at understanding fossils can be seen in ancient Greece and Rome, where philosophers such as Herodotus understood that the presence of petrified shells indicated the recession of a past marine environment (Forli & Guerrini, 2022a). However, much of the groundwork for modern palaeontology was only developed in the late 17th century (Boudreau et al., 2023). Regarded as one of the most influential figures in modern geology, Nicholas Steno had outlined the Principles of Stratigraphy in his 1669 Dissertationis Prodromus - to be used as a jumping board for many earth scientists to come (Berthault, 2022). In the early 1800’s, William Smith had utilised his fossil knowledge to differentiate and match layers of rock known as strata, published in Strata Identified by Organised Fossils (Scott, 2008). And perhaps one of the largest contributions to modern palaeontology, Darwin's theory of evolution outlined in On the Origin of Species allowed for natural scientists to better understand the evolution of species throughout time. Considering how much of what we know about modern palaeontology was only published in the last 350 years, it becomes clear why so many cultures had developed their own interesting interpretations of fossils. From magical spells to infernal beasts, these legends highlight the prominent ideologies of their time. So let us explore some of the more interesting and diverse fossil myths from the ages. Merlinia To start, we will be discussing the folklore origin of Merlinia, an extinct genus of trilobite from the Early Ordivician age, 470 million years ago (British Geological Survey, n.d.). Trilobites were small sea-faring invertebrates who first appeared following the Cambrian Explosion, and were prominent throughout the fossil record until their unfortunate extinction 250 million years ago during the Late Permian mass extinction (American Museum of Natural History, n.d.). According to the British Geological Survey, this genus of trilobite was extensively found throughout the rocks of Carmarthen - a Welsh town famous for being the supposed birthplace of Merlin, the legendary wizard and advisor to King Arthur (‘P550303’, 2009). Often mistaken by the townspeople as stone butterflies, these fossils were naturally attributed to Merlin and thought to be the product of a petrification spell (American Museum of Natural History, n.d.). Whilst disheartening for the butterflies, the real trilobites behind the myth likely faced a much more wicked and sorrowful demise. Snakestones Much like Merlinia, snakestones were also named after a prominent figure with a habit for turning creatures to stone. Saint Hilda of Whitby was the abbess of the local town monastery during the sixteen hundreds, and was widely credited for the creation of these fossils - which are otherwise known as Hildoceras, after herself (Lotzof, n.d.). With the town facing a plague of snakes, St Hilda was said to have performed a miracle that petrified the serpents and forced them to coil into the fossils we see today (National Museums Scotland, n.d.). These stony serpents however are really just ammonites, a group of molluscs that went extinct alongside the dinosaurs 66 million years ago (Osterloff, n.d.). The legend of St Hilda isn’t the only instance of snake-repellent folklore either, with St Patrick earning himself a holiday after supposedly clearing the snakes out of Ireland. Much of the rise of European anguine-based legends can be attributed to growing Christian influences during the second millennium. The biblical depiction of snakes as tempting and disingenuous has caused them to be portrayed harshly throughout older western media (Migdol, 2021). Unsurprisingly, this isn't the only time that palaeontology and Christianity have crossed paths. The Devil Perhaps the most infamous figure in human culture, the Devil is outlined in Christian doctrine as the embodiment of sin and evil. References to their influence can be found throughout human history, and have naturally found their way into geological folklore. Many geological features have been attributed to a satanic presence, thought to be remnants from when the Devil would walk the earth (Forli & Guerrini, 2022b). Gryphaea was a fossil widely mistaken as the authentic nails of Satan himself, hence nicknamed the ‘Devil’s Nails’, and was used as a proxy to determine areas of evil (Forli & Guerrini, 2022b). However, these fossils were not the byproduct of Satan’s occasional beauty treatments, but rather an extinct genus of mollusc from the early Jurassic, 200 million years ago (Forli & Guerrini, 2022b). Nail clippings were not the only features observed that people considered to be a sign of the Devil’s unholy pilgrimage. Devilish hoof-shaped steps embedded into stone have been reported throughout the world. Referred to as ‘il-passi tax-xitan’ by the Maltese, meaning ‘the devil's footsteps’, these tracks were considered further proof of the Devil's presence amongst mankind (Duffin & Davidson, 2011). In Malta these footprints were really just fossilised echinoids - innocent former sea urchins facing unkind accusations of being demonic (Duffin & Davidson, 2011). That's not to say all Maltese fossils were considered unholy: some 16th century priests conversely believed them to be the footsteps of St Paul the Apostle, following his shipwrecking on the island in the 1st century (Mayor & Sarjeant, 2001). Dragons Dragons are some of the most well known mythical creatures, with many cultures around the world having their own rendition of a mystic dragon-like beast. Unlike some of the other legends explored so far, it is unlikely that fossilised remains were the initial cause of this myth, but were rather used as evidence to cement it in truth. Dragons were considered prominent creatures throughout the Indian mountains, with evidence of dragon hunts being displayed in the ancient city of Paraka (Mayor, 2000). Apollonius of Tyana, a 1st century Greek philosopher, was said to have observed these dragons during his passage through the Siwalik Hills - an Indian range known for its preservation of larger fossils (Mayor, 2000). Described by Apollonius as considerable tusked creatures, these dragon remains were more than likely the fossils of extinct elephants and giraffids - such as Elephas hysudricus or Sivatherium giganteum (Mayor, 2000). India is not the only country to have experienced this phenomenon either, with many Asian and European societies said to have also continuously misdiagnose large vertebrate fossils as dragon bones. Whether it is mischievous spellcasting or the indication of a demonic evil, myths surrounding fossils have existed throughout centuries of human society. These legends provide a fascinating window into the creative minds of past cultures, and their beliefs at the time. While modern palaeontologists have proven these legends to be no more than captivating stories, it is important to view this folklore with a certain understanding and respect. These early attempts at trying to understand the world around us provides an interesting insight into human nature, and our innate desire to search for answers. References American Museum of Natural History. (n.d.) End of the Line - The demise of the Trilobites . American Museum of Natural History. https://www.amnh.org/research/paleontology/collections/fossil-invertebrate-collection/trilobite-website/trilobite-localities/end-of-the-line-the-demise-of-the-trilobites Berthault, G. (2002). Analysis of Main Principles of Stratigraphy on the Basis of Experimental Data . Lithology and Mineral Resources, 22(5), 442-446. https://doi.org/10.1023/A:1020220232661 Boudreau, D., McDaniel, M., Sprout, E., & Turgeon, A. (2023). Paleontology . National Geographic Society. https://education.nationalgeographic.org/resource/paleontology/ British Geological Survey (n.d.). Trilobites . https://www.bgs.ac.uk/discovering-geology/fossilsand-geological-time/trilobites/ Duffin, C. J., & Davidson, J. P. (2011). Geology and the dark side . Proceedings of the Geologists’ Association, 122(1), 7-15. https://doi.org/10.1016/j.pgeola.2010.08.002 Forli, M., & Guerrini, A. (2022). Bivalvia: Devil’s Nails, Reflections Between Superstition and Science. In The History of Fossils Over Centuries (pp. 181-206). Springer, Cham. https://doi.org/10.1007/978-3-031-04687-2_2 Forli, M., & Guerrini, A. (2022). Fossilia and Fossils: Considerations on Their Understanding Over the Centuries . In The History of Fossils Over Centuries (pp. 5-25). Springer, Cham. https://doi.org/10.1007/978-3-031-04687-2_12 Lotzof, K. (n.d.). Snakestones: The Myth, Magic, and Science of Ammonites . Natural History Museum. https://www.nhm.ac.uk/discover/snakestones-ammonites-myth-magic-science.html Mayor, A. (2000). CHAPTER 3 Ancient Discoveries of Giant Bones . In The First Fossil Hunters (pp. 104-156). Princeton University Press. https://www.jstor.org/stable/j.ctt7s6mm.11 Mayor, A., & Sarjeant, W.A.S. (2001). The Folklore of Footprints in Stone: From Classical Antiquity to the Present . An International Journal for Plant and Animal Traces, 8(2), 143-163. https://www.jstor.org/stable/j.ctt7s6mm.11 Migdol, E., Morrison, E., & Grollemond, L. (2021). What Did People Believe about Animals in the Middle Ages? Getty Conservation Institute. https://www.getty.edu/news/what-did-people-believe-about-animals-in-the-middle-ages/ National Museums Scotland (n.d.). Snakestones . https://www.nms.ac.uk/explore-our- collections/stories/natural-sciences/fossil-tales/fossil-tales-menu/snakestones/ Osterloff, E. (n.d.). What Is an Ammonite? Natural History Museum. https://www.nhm.ac.uk/discover/what-is-an-ammonite.html P550303. (2009). British Geological Survey . http://geoscenic.bgs.ac.uk/asset- bank/action/viewAsset?id=113713&index=4&total=6&view=viewSearchItem Scott, M. (2008). William Smith (1769-1839) . NASA Earth Observatory. https://earthobservatory.nasa.gov/features/WilliamSmith Wicked back to
- OmniSci Magazine
OmniSci Magazine is the University of Melbourne's science magazine, written by students. Read our recent issues and view the magnificent illustrations! Cover Art: May Du READ NOW Issue 8 Welcome to OmniSci Magazine OmniSci Magazine is a student-led science magazine and social club at UniMelb. We are a group of students passionate about science communication and a platform for students to share their creativity. Read More More from OmniSci Magazine Previous Issues Illustration by Louise Cen READ ISSUE 6 National Science Week 'SCIENCE IS EVERYWHERE' PHOTO/ART COMPETITION VIEW SUBMISSIONS
- Silent conversations | OmniSci Magazine
Have you ever wondered if trees talk to each other? Happily, many scientists across time have had the same thought. So much fascinating knowledge has arisen from their research about the intricacies of trees and the different ways they converse with one another. Chatter Silent Conversations: How Trees Talk to One Another By Lily McCann There are so many conversations that go on beyond our hearing. This column explores communication between trees and how it might change the way we perceive them. Edited by Ethan Newnham, Irene Lee & Niesha Baker Issue 1: September 24, 2021 Illustration by Rachel Ko It’s getting brighter. A long, long winter is receding and warm days are flooding in. I’m not one for sunbathing, but I love to lie in the backyard in the shade of the gums and gaze up into the branches. They seem to revel in the weather as much as I do, waving arms languidly in the light or holding still as if afraid to lose a single ray of sun. If there’s a breeze, you might just be able to hear them whispering to one another. There’s a whole family of these gums in my backyard and each one is different. I can picture them as distinctly as the faces of people I love. One wears a thick, red coat of shaggy bark; another has pale, smooth skin; a third sheds its outer layer in long, stringy filaments that droop like scarves from its limbs. These different forms express distinct personalities. Gum trees make you feel there is more to them than just wood and leaves. There’s a red gum in Central Victoria called the ‘Maternity Tree’. It’s incredible to look at. The huge trunk is hollowed out and forms a sort of alcove or belly, open to the sky. Generations of Dja Dja Wurrung women have sought shelter here when in labour. An arson attack recently blackened the trunk and lower branches, but the tree survived (1). Such trees have incredibly long, rich lives. Imagine all the things they would say, if they could only tell us their stories. Whilst the ‘whispering’ of foliage in the wind may not have significance beyond its symbolism, there are other kinds of communication trees can harness. All we see when a breeze blows are branches and leaves swaying before it, but all the time a plethora of tiny molecules are pouring out from trees into the air. These compounds act like tiny, encrypted messages riding the wind, to be decoded by neighbours. They can carry warnings about unwanted visitors, or even coordinate group projects like flowering, so that trees can bloom in synchrony. If we turn our gaze lower we can see that more dialogue spreads below ground. Trees have their own telephone cable system (7), linking up members of the same and even different species. This system takes the form of fungal networks, which transfer nutrients and signals between trees (3). Unfortunately, subscription to this network isn’t free: fungi demand a sugar supply for their services. Overall, though, the relationship is beneficial to both parties and allows for an effective form of underground communication in forests. These conversations are not restricted to deep-rooted, leaf-bearing beings: trees are multilingual. A whole web of inter-species dialogue murmurs amongst the branches beyond the grasp of our deaf ears. Through the language of scent, trees entice pollinators such as bees and birds to feed on their nectar and spread their pollen (4). They warn predators against attacking by releasing certain chemicals (5). They can even manipulate other species for their own defence: when attacked by wax scale insects, a Persimmon tree calls up its own personal army by alerting ladybugs, who feed on the scales, averting the threat to the tree (6). Such relationships demonstrate the crucial role trees play in local ecosystems and their essentially cooperative natures. Trees can be very altruistic, especially when it comes to family members. Mother trees foster the growth of young ones by providing nutrients, and descendants support their elderly relatives - even corpses of hewn-down trees - through their underground cable systems. These intimate, extensive connections between trees are not so different from our own societal networks. Do trees, too, have communities, family loyalties, friends? Can they express the qualities of love and trust required, in the human world, for such relationships? This thought begs the question: Can trees feel? They certainly have an emotional impact on us. I can sense it as I lie under the gums. Think about the last time you went hiking, sat in a tree’s shade, walked through a local park. There’s something about being amongst trees that calms and inspires. Science agrees: one study has shown that walking in forests is more beneficial to our health than walking through the city. How do trees manage to have such a strong effect on us? Peter Wohlleben, German forester and author of The Hidden Life of Trees, suggests that happy trees may impart their mood to us (9). He compares the atmosphere around ‘unhappy’ trees in plantations where threats abound and stress signals fill the air to old forests where ecosystem relations are more stabilised and trees healthier. We feel more relaxed and content in these latter environments. The emotive capacity of trees is yet to be proven scientifically, but is it a reasonable claim? If we define happiness as the circulation of ‘good’ molecules such as growth hormones and sugars, and the absence of ‘bad’ ones like distress signals, then we may suggest that for trees an abundance of good cues and a lack of warnings could be associated with a positive state. And this positive state - allowing trees to fulfill day-to-day functions, grow and proliferate, live in harmony with their environment - could be termed a kind of happiness in its own right. This may seem like a stretch - after all, how can you feel happiness without a brain? But Baluska et al. suggest that trees have those too, or something like them: command centres, integrative hubs in roots functioning somewhat like our own brains (10). Others compare a tree to an axon, a single nerve, conducting electrical signals along its length (11). Perhaps we could say that a forest, the aggregate of all these nerve connections, is a brain. Whilst we can draw endless analogies between the two, trees and animals parted ways 1.5 billion years ago in their evolutionary paths (12). Each developed their own ways of listening and responding to their environments. Who’s to say whether they haven’t both developed their own kinds of consciousness? If we take the time to contemplate trees, we can see that they are infinitely more complex and sensitive than we could have imagined. They have their own modes of communicating with and reacting to their environment. The fact is, trees are storytellers. They send out a constant flow of information into the air, the soil, and the root and fungal systems that join them to their community. Even if we can’t converse with trees in the same way that we converse with each other, it’s worth listening in on their chatter. They could tell us about changes in climate, threats to their environment, and how we can best help these graceful beings and the world around them. References: 1. Schubert, Shannon. “700yo Aboriginal Maternity Tree Set Alight in Victoria.” www.abc.net.au , August 8, 2021. https://www.abc.net.au/news/2021-08-08/dja-dja-wurrung-birthing-tree-set-on-fire/100359690. 2. Pichersky, Eran, and Jonathan Gershenzon. “The Formation and Function of Plant Volatiles: Perfumes for Pollinator Attraction and Defense.” Current Opinion in Plant Biology 5, no. 3 (June 2002): 237–43. https://doi.org/10.1016/s1369-5266(02)00251-0.; Falik, Omer, Ishay Hoffmann, and Ariel Novoplansky. “Say It with Flowers.” Plant Signaling & Behavior 9, no. 4 (March 5, 2014): e28258. https://doi.org/10.4161/psb.28258. 3. Simard, Suzanne W., David A. Perry, Melanie D. Jones, David D. Myrold, Daniel M. Durall, and Randy Molina. “Net Transfer of Carbon between Ectomycorrhizal Tree Species in the Field.” Nature 388, no. 6642 (August 1997): 579–82. https://doi.org/10.1038/41557. 4. Buchmann, Stephen L, and Gary Paul Nabhan. The Forgotten Pollinators. Editorial: Washington, D.C.: Island Press/Shearwater Books, 1997. 5. De Moraes, Consuelo M., Mark C. Mescher, and James H. Tumlinson. “Caterpillar-Induced Nocturnal Plant Volatiles Repel Conspecific Females.” Nature 410, no. 6828 (March 2001): 577–80. https://doi.org/10.1038/35069058. 6. Zhang, Yanfeng, Yingping Xie, Jiaoliang Xue, Guoliang Peng, and Xu Wang. “Effect of Volatile Emissions, Especially -Pinene, from Persimmon Trees Infested by Japanese Wax Scales or Treated with Methyl Jasmonate on Recruitment of Ladybeetle Predators.” Environmental Entomology 38, no. 5 (October 1, 2009): 1439–45. https://doi.org/10.1603/022.038.0512. 7, 9. Wohlleben, Peter, Jane Billinghurst, Tim F Flannery, Suzanne W Simard, and David Suzuki Institute. The Hidden Life of Trees : The Illustrated Edition. Vancouver ; Berkeley: David Suzuki Institute, 2018. 10. Baluška, František, Stefano Mancuso, Dieter Volkmann, and Peter Barlow. “The ‘Root-Brain’ Hypothesis of Charles and Francis Darwin.” Plant Signaling & Behavior 4, no. 12 (December 2009): 1121–27. https://doi.org/10.4161/psb.4.12.10574. 11. Hedrich, Rainer, Vicenta Salvador-Recatalà, and Ingo Dreyer. “Electrical Wiring and Long-Distance Plant Communication.” Trends in Plant Science 21, no. 5 (May 2016): 376–87. https://doi.org/10.1016/j.tplants.2016.01.016. 12. Wang, Daniel Y.-C., Sudhir Kumar, and S. Blair Hedges. “Divergence Time Estimates for the Early History of Animal Phyla and the Origin of Plants, Animals and Fungi.” Proceedings of the Royal Society of London. Series B: Biological Sciences 266, no. 1415 (January 22, 1999): 163–71. https://doi.org/10.1098/rspb.1999.0617.
- Designing the perfect fish | OmniSci Magazine
< Back to Issue 7 Designing the perfect fish by Andy Shin 22 October 2024 edited by Luci Ackland illustrated by Esme MacGillivray Fish are the oldest known vertebrates, with the earliest fossil evidence dating back to the lower Cambrian period almost 530 million years ago (Shu et al., 1999). Since their inception, fish have exhibited a variety of different physical and behavioural traits to best exploit their environments. Over time, the effectiveness of these traits will be tested through competitive pressures or environmental factors. This raises a rather silly but nonetheless interesting question; if we could design a ‘frankenfish’ using features from other fish, what would the best combination of traits be for our modern oceans? Will older trends still work today? Is there a fish now that is already perfect? To help us answer this question, we will need to set a few ground rules: The idea of a ‘perfect’ animal is incredibly subjective and does not follow any known ecological frameworks. For this thought experiment, our ‘frankenfish’ will need to be able to manage the impacts of climate change and global fisheries. We will assume that the frankenfish must compete with existing species in the ocean. We can choose where we initially release our fish. Other than a rapidly warming ocean, we will assume no catastrophic extinction level event. We will assume that our frankenfish will survive long enough to reproduce at least once, ensuring the initial population is allowed to grow in size. Considerations Thermal tolerance With mean ocean sea surface temperatures predicted to increase by 1-2 degrees Celsius in the next century (Mimura, 2013), we should first design our fish after more tropical or temperate species. If sea surface temperatures become too high, our new fish could move towards the poles. This phenomenon is known as a range shift (Rubenstein et al., 2023) and has already been performed by many different marine species in recent years. When looking at the larval stages of different marine organisms, those that live in higher temperatures are generally better-equipped to deal with changes in the surrounding temperature (Marshall & Alvarez-Noriega, 2020). Trophic position Although it would be fun to simply create a new apex predator, we will need to think of trade-offs between energy expenditure, energy requirements and food availability. As a general rule of thumb, only 10% of caloric energy is transferred through each trophic level (Lindeman, 1942). Essentially, this means an organism at the top of the food chain will need to consume thousands of different organisms over its lifetime. Likewise, a lower-order organism will likely be a food source for a higher one but require less total energy to grow and reproduce over its lifetime. Essentially, there will be more room in the environment for lower-order fish, meaning more individuals can be placed, increasing the chance of successful future reproductive events. Life history and reproductive strategy In the world of ecology, species can broadly be categorised into 2 groups based on life history strategies: r-selected and k-selected species (Pianka, 1970). R-selected species tend to produce large numbers of offspring, develop quickly, and have higher rates of offspring mortality. Likewise, k-selected species develop slower, have less offspring but have higher rates of offspring survivorship. Group behaviours Fish often display group behaviours known as schooling and shoaling. Shoaling refers to a congregation of fish, whilst schooling requires coordinated movement of fish in the same direction. By grouping together, fish have less individual risk of being eaten by a predator and the group’s ability to sense danger is also heightened. Furthermore, schooling behaviour can reduce the energy an individual fish spends whilst swimming by 20% (Marras et al., 2014). Group behaviour may also lead to confusing an inexperienced predator (Magurran, 1990), though many modern predator species have adaptations to take advantage of shoals and schools. There are some drawbacks to group behaviour. Firstly, fish will have access to less food individually as enough food will need to be distributed across the group. Secondly, groups which grow too large attract large numbers of predators and lead to ‘bait balls’, which is essentially a floating buffet for any larger animal. Group behaviour is incredibly common in lower-order fish but is also exhibited in higher order predators such as Tuna and some shark species. It is estimated that almost half of all fish species will partake in group behaviour at some point in their lifecycle. Scales, Plates and Skin The structure of skin has implications for the hydrodynamics of an organism, influencing the level of lift and drag. The type of skin will also influence protection from parasites and predators. We will briefly discuss two types of scales, but other specialised scales exist. The skin of cartilaginous fish (sharks and rays) is composed of microscopic interlocking teeth-like structures known as placoid scales. The unique design of placoid scales facilitates the formation of small whorls whilst moving, reducing the drag experienced by the fish (Helfman et al., 2009, pp. 23–41). Placoid scales also act as a parasite deterrent, comparable to antifouling designs in modern cargo ships. Alternatively, many teleosts (bony fish) are covered in larger (non-microscopic), thinner scales known as leptoid scales (Helfman et al., 2009, pp. 23–41). These are further differentiated into circular and toothed scales (Helfman et al., 2009, pp. 23–41). Circular scales are smoother and uniformed, whilst toothed scales are rougher. Similar to placoid scales, leptoid scales reduce drag experienced by the fish (Roberts, 1993). Additionally, leptoid scales can be highly reflective, allowing for a unique form of camouflage known as silvering (Herring, 2001). Another thing to consider is colour. Red light is almost invisible past 40 metres of depth (National Oceanic and Atmospheric Association, n.d.), whilst blues and greys can. provide better camouflage from predators above and below you through countershading (Ruxton et al., 2004). Extra features – toxins, slime and light These are niche defence mechanisms which reduce the risk of predation. When agitated, Hagfish are able to release a thick, quickly expanding mucus from their skin, blocking the gills of an attacking fish (Zeng et al., 2023). Hagfish are only able to remove excess mucus on their skin by creating a knot with their own body (Böni et al., 2016), which is possible thanks to their eel-like shape. This design may not translate well when creating our own perfect fish, as the elongated shape limits it to the bottom of the ocean (Friedman et al., 2020). Other fish, such as some species of pufferfish, house bacteria in various organs that produce toxins which pool in livers and ovaries. A downside with toxins is that they only work if an attacker is already aware of their effect, meaning at least 1 pufferfish was consumed in the past. Furthermore, some fish species can ignore the effect of certain toxins. Toxin-producing bacteria is acquired through diet, which could limit the dietary range of our frankenfish. Other species of fish such as lionfish, stonefish and some catfish contain specialised venom glands which release toxins along the spines of their fins, which is considered a more efficient delivery method. Even without toxins, sharper fins can act as a deterrent for predators from swallowing you whole. Fish living in deeper waters tend to display bioluminescence, which causes them to produce light with the help of bacteria. This has numerous benefits including startling predators, camouflage, attracting food, and in unique cases allows an animal to see red pigments deep underwater (Young & Roper, 1976; Herring & Cope, 2005). As a downside, humans tend to exploit bioluminescence and use it to find large groups of fish and squid. Past and current champions The armoured fish The armoured fish, known as Placodermi, were a widespread group of fish who were prominent during the Devonian period (419 – 359 mya). The Placoderms are subdivided into 8 orders based on body shape characteristics, the most successful of which was known as Arthrodira. Species in Arthrodira occupied a variety of different niches from apex predators to detrital feeders, but all shared the common feature of jointed armour plates near the neck and face. The Placoderms were never outcompeted in their 60-million-year run. Instead, their time on Earth was cut short by multiple catastrophic events associated with the Late Devonian extinction. This could suggest that without random chance, the Placoderms would never have been dethroned. Sharks Sharks emerged at a similar time to the Placoderms but managed to survive the Late Devonian extinction events. Sharks have a cartilaginous skeleton as well as electromagnetic receptors known as Ampullae of Lorenzini, which are used to detect prey activity. The body plan of sharks has stayed relatively consistent over the last 400 million years, and they’ve managed to survive various extinction level events. The only issue with sharks is their value to humans, leading to millions of sharks being harvested for fins each year. Sharks are a k-selected species and produce only a handful of young. Most sharks deposit a handful of eggs which are protected by a casing and filled with yolk, increasing the fitness of a successful juvenile but also increasing the chance of predation removing it from the gene pool. Smaller egg clutches also mean the loss of a young shark has a higher relative impact on a population compared to a mass spawning species. Bristlemouths and Lanternfish These are similar families of fish and are some of the most abundant vertebrates on the planet. Unlike sharks, these fish are R-selected. Otolith (fish ear bone) samples suggest both families rose to prominence at least 5 million years ago (Přikryl & Carnevale, 2017; Schwarzhans & Carnevale, 2021) due to a massive bloom in phytoplankton. Out of these 2 groups, the Bristlemouths are the most abundant. Although survey data from the deep ocean is rare, prior studies revealed between 70-80% of all deep-sea fish were a variation of a Bristlemouth (Sutton et al., 2010). Despite their abundance, not too much is known about the Bristlemouth due to the depths they inhabit; 1000- 2000 metres. Meanwhile, Lanternfish are responsible for displaying a rising and falling ‘false sea floor’ in early sonar technology, known as the Deep Scattering Layer (Carson et al., 1951/1991). Movement of the layer is attributed to Diel Vertical Migration, a phenomenon where fish will move up and down the water column at certain times of day to avoid predation (Ritz et al., 2011). Constructing our fish Despite the historical success of the Placoderms, current trends in prey behaviours and morphology means armoured jaws are unlikely to be very useful in modern oceans (Bellwood et al., 2015). Furthermore, armoured plates will be heavier compared to scales or cartilage, meaning excess energy will have to be gathered via predation. Given that the oceans are abundant in second-order consumers such as zooplankton and planktotrophic fish, it may be worthwhile to make our new fish a third-order consumer. The sheer abundance of bristlemouths and lanternfish should make up for the inefficiencies of higher trophic levels. Habitat-wise, our new fish should adopt a pelagic (open ocean) lifestyle to best take advantage of the abundant smaller prey animals. When thinking of behaviours, our fish taking a nocturnal approach would work best to exploit the previously mentioned diel vertical migration behaviours seen in bristlemouths and lanternfish. This also allows for daytime predator avoidance, providing our fish the best possible chance to grow in numbers and proliferate. Given the trophic position of our fish, it is reasonable to also give it the capability to form schools and shoals. The group energy costs can be offset by the abundance of prey species, which also exhibit group behaviour. The best place to release our new fish would be somewhere in the mid-latitudes. This would make it more tolerant to higher temperatures and the percentage of global ocean area is only expected to increase in the near future (unless humans can somehow revert anthropogenic climate change). Our fish should be relatively slender and be red in colour. In theory, when combined with the depth of habitat, this will make our frankenfish almost invisible to organisms without additional specialised adaptations. Taking a page from the squid playbook, small bioluminescent regions along the top half of the fish would provide some further camouflage from predators looking down. The spines on our fish’s fins should be longer and sharper than average. For fun, we can also give our fish a venomous gland. Combining long spines with venom could dissuade some predators from eating our fish, through either awkward positioning or risk of poisoning. References Alexander, R. M. (2004). Hitching a lift hydrodynamically - in swimming, flying and cycling. Journal of Biology , 3 (2), 7. https://doi.org/10.1186/jbiol5 Bellwood, David R., Goatley, Christopher H. R., Bellwood, O., Delbarre, Daniel J., & Friedman, M. (2015). The Rise of Jaw Protrusion in Spiny-Rayed Fishes Closes the Gap on Elusive Prey. Current Biology , 25 (20), 2696–2700. https://doi.org/10.1016/j.cub.2015.08.058 Böni, L., Fischer, P., Böcker, L., Kuster, S., & Rühs, P. A. (2016). Hagfish slime and mucin flow properties and their implications for defense. Scientific Reports , 6 (1). https://doi.org/10.1038/srep30371 Carson, R. L., Zwinger, A. H., & Levinton, J. S. (1991). The sea around us . Oxford University Press. (Original work published 1951) Feld, K., Kolborg, A. N., Nyborg, C. M., Salewski, M., Steffensen, J. F., & Berg Sørensen, K. (2019). Dermal Denticles of Three Slowly Swimming Shark Species: Microscopy and Flow Visualization. Biomimetics , 4 (2), 38. https://doi.org/10.3390/biomimetics4020038 Friedman, S. T., Price, S. A., Corn, K. A., Larouche, O., Martinez, C. M., & Wainwright, P. C. (2020). Body shape diversification along the benthic– pelagic axis in marine fishes. Proceedings of the Royal Society B: Biological Sciences , 287 (1931), 20201053. https://doi.org/10.1098/rspb.2020.1053 Helfman, G. S., Collette, B. B., Facey, D. E., & Bowen, B. W. (2009). The Diversity of Fishes: Biology, Evolution and Ecology. In Copeia (2nd ed., Issue 2, pp. 23–41). John Wiley & Sons. Herring, P. (2001). The Biology of the Deep Ocean. In Oxford University Press eBooks . Oxford University Press. https://doi.org/10.1093/oso/9780198549567.001.0001 Herring, P. J., & Cope, C. (2005). Red bioluminescence in fishes: on the suborbital photophores of Malacosteus, Pachystomias and Aristostomias. Marine Biology , 148 (2), 383–394. https://doi.org/10.1007/s00227-005-0085- 3 Irigoien, X., Klevjer, T. A., Røstad, A., Martinez, U., Boyra, G., Acuña, J. L., Bode, A., Echevarria, F., Gonzalez-Gordillo, J. I., Hernandez-Leon, S., Agusti, S., Aksnes, D. L., Duarte, C. M., & Kaartvedt, S. (2014). Large mesopelagic fishes biomass and trophic efficiency in the open ocean. Nature Communications , 5 (1). https://doi.org/10.1038/ncomms4271 Lindeman, R. L. (1942). The Trophic-Dynamic Aspect of Ecology. Ecology , 23 (4), 399–417. https://doi.org/10.2307/1930126 Magurran, A. E. (1990). The adaptive significance of schooling as an anti predator defense in fish. Annales Zoologici Fennici , 27 (2), 51–66. Marras, S., Killen, S. S., Lindström, J., McKenzie, D. J., Steffensen, J. F., & Domenici, P. (2014). Fish swimming in schools save energy regardless of their spatial position. Behavioral Ecology and Sociobiology , 69 (2), 219–226. https://doi.org/10.1007/s00265-014-1834-4 Marshall, D. J., & Alvarez-Noriega, M. (2020). Projecting marine developmental diversity and connectivity in future oceans. Philosophical Transactions of the Royal Society B: Biological Sciences , 375 (1814), 20190450. https://doi.org/10.1098/rstb.2019.0450 Mimura, N. (2013). Sea-level rise caused by climate change and its implications for society. Proceedings of the Japan Academy, Series B , 89 (7), 281–301. https://doi.org/10.2183/pjab.89.281 National Oceanic and Atmospheric Association. (n.d.). Why are so many deep sea animals red in color?: Ocean Exploration Facts: NOAA Office of Ocean Exploration and Research . Oceanexplorer.noaa.gov . https://oceanexplorer.noaa.gov/facts/red-color.html Pianka, E. R. (1970). On r- and K-Selection. The American Naturalist , 104 (940), 592–597. https://doi.org/10.1086/282697 Přikryl, T., & Carnevale, G. (2017). Miocene bristlemouths (Teleostei: Stomiiformes: Gonostomatidae) from the Makrilia Formation, Ierapetra, Crete. Comptes Rendus Palevol , 16 (3), 266–277. https://doi.org/10.1016/j.crpv.2016.11.004 Ritz, D. A., Hobday, A. J., Montgomery, J. C., & Ward, A. J. W. (2011). Chapter Four - Social Aggregation in the Pelagic Zone with Special Reference to Fish and Invertebrates. Advances in Marine Biology , 60 (1), 161–227. https://doi.org/10.1016/B978-0-12-385529-9.00004-4 Roberts, C. D. (1993). Comparative morphology of spined scales and their phylogenetic significance in the Teleostei. Bulletin of marine science , 52 (1), 60-113. Rubenstein, M. A., Weiskopf, S. R., Bertrand, R., Carter, S., Comte, L., Eaton, M., Johnson, C. G., Lenoir, J., Lynch, A., Miller, B. W., Morelli, T. L., Rodriguez, M. A., Terando, A., & Thompson, L. (2023). Climate change and the global redistribution of biodiversity: Substantial variation in empirical support for expected range shifts. Journal of Environmental Evidence , 12 (7). https://doi.org/10.1186/s13750-023-00296-0 Ruxton, G. D., Speed, M. P., & Kelly, D. J. (2004). What, if anything, is the adaptive function of countershading? Animal Behaviour , 68 (3), 445–451. https://doi.org/10.1016/j.anbehav.2003.12.009 Schwarzhans, W., & Carnevale, G. (2021). The rise to dominance of lanternfishes (Teleostei: Myctophidae) in the oceanic ecosystems: a paleontological perspective. Paleobiology , 47 (3), 446–463. doi.org The rise to dominance of lanternfishes (Teleostei: Myctophidae) in the oceanic ecosystems: a paleontological perspective | Paleobiology | Cambridge Core The rise to dominance of lanternfishes (Teleostei: Myctophidae) in the oceanic ecosystems: a paleontological perspective - Volume 47 Issue 3 Shu, D.-G., Luo, H.-L., Morris, S. C., Zhang, X.-L., Hu, S.-X., Chen, L., Han, J., Zhu, M., Li, Y., & Chen, L.-Z. (1999). Lower Cambrian vertebrates from south China. Nature , 402 (6757), 42–46. https://doi.org/10.1038/46965 Sutton, T. T., Wiebe, P. H., Madin, L., & Bucklin, A. (2010). Diversity and community structure of pelagic fishes to 5000m depth in the Sargasso Sea. Deep Sea Research Part II: Topical Studies in Oceanography , 57 (24-26), 2220–2233. https://doi.org/10.1016/j.dsr2.2010.09.024 Young, R., & Roper, C. (1976). Bioluminescent countershading in midwater animals: evidence from living squid. Science , 191 (4231), 1046–1048. https://doi.org/10.1126/science.1251214 Zeng, Y., Plachetzki, D. C., Nieders, K., Campbell, H., Cartee, M., Pankey, M. S., Guillen, K., & Fudge, D. (2023). Epidermal threads reveal the origin of hagfish slime. ELife , 12 , e81405. https://doi.org/10.7554/eLife.81405 Previous article Next article apex back to
- Soaring Heights: An Ode to the Airliner | OmniSci Magazine
< Back to Issue 7 Soaring Heights: An Ode to the Airliner by Aisyah Mohammad Sulhanuddin 22 October 2024 edited by Lauren Zhang illustrated by Esme MacGillivray A smile at your neighbour-to-be, a quick check and an awkward squeeze as you sidle into your seat: 18A. Window seat, a coveted treasure! A clatter . Whoops! As you fumble for your dropped phone, your feet–which jut out ungracefully onto the aisle, end up as a speed bump for the wheels of someone’s carry-on. Yeowch! It isn’t without more jostling that everyone finally settles into their seats, and with a scan at the window, the tarmac outside is looking busy. Hmm. It makes sense–this flight is just one of the 36.8 million trips around the world flown over the past year (International Air Transport Association, 2024). Commercial aviation has clocked many miles since its first official iteration in 1914: a 27-km long “airboat” route established around Tampa Bay, Florida (National Air and Space Museum, 2022). Proving successful, it catalysed an industry and led to the establishment of carriers like Qantas, and the Netherlands’ KLM. Mechanics of Ascent (and Staying Afloat) As said Qantas plane pulls up in the window view, its tail dipped red with the roo taxies ahead of you on the tarmac. Your plane is now at the front of the runway queue and the engines begin to roar. You’re thrusted backwards as gravity moulds you to your seat. For a split second, as you look out the window, you can’t help but wonder– how on earth did you even get up here? How is this heavy, huge plane not falling out of the sky? The ability for a plane to stay afloat lies in its wings, which allow the plane to fly. The wings enable this through generating lift (NASA, 2022). Lift is described as one of the forces acting on an object like a plane, countering weight under gravity which is the force acting in the opposite direction, according to Newton’s Third Law ( figure 1a ). A plane's wings are constructed in a curved ‘airfoil’ shape with optimal aerodynamic properties: as pressure decreases above the wing with deflected oncoming air pushed up, the velocity increases, as per Bernoulli’s principle. This increases the difference in pressure above and below the wing, which remains high, generating a lift force that pushes the plane upwards (NASA, 2022) ( figure 1b ). Figure 1a. Forces that act on a plane . Note. From Four Forces on an Airplane by Glenn Research Centre. NASA, 2022 . https://www1.grc.nasa.gov/beginners-guide-to-aeronautics/four-forces-on-an-airplane/ . Copyright 2022 NASA. Figure 1b. An airfoil, with geometric properties suitable for generating lift. Note. From Four Forces of Flight by Let’s Talk Science. Let’s Talk Science, 2024. https://letstalkscience.ca/educational-resources/backgrounders/four-forces-flight . Copyright 2021 Let’s Talk Science. Looking laterally, the thrust of a plane’s engines counters the horizontal drag force that airfoils minimise, all whilst maximising lift. Advancements in plane design over the mid-20th century focused on optimising this ‘Lift to Drag ratio’ for greater efficiency, a priority stemming from the austere, military landscape of World War II (National Air and Space Museum, 2022). Influenced by warplane manufacturing trends, the commercial sphere saw a transition from wooden to durable aluminium frames. In conjunction with this, double-wing biplanes were superseded by single-wing monoplanes ( figure 2a, b ), which had a safer configuration that reduced airflow interference whilst maximising speed and stability (Chatfield, 1928). Figure 2a. A biplane, the De Havilland DH-82A Tiger Moth. Note. From DH-82A Tiger Moth [photograph] by Temora Aviation Museum. Temora Aviation Museum, 2017 . https://aviationmuseum.com.au/dh-82a-tiger-moth/ . Copyright 2024 Temora Aviation Museum. Figure 2b. A monoplane, an Airbus A310. Note. From Airbus A310-221, Swissair AN0521293 [photograph] by Aragão, P, 1995. Wikimedia Commons . https://commons.wikimedia.org/wiki/File:Airbus_A310-221,_Swissair_AN0521293.jpg CC BY-SA 3.0. Taking a Breather Without really noticing it, you’re somewhat upright again. Employing head shakes and gulps to make your own ears pop, you can also hear the babies bawling in discomfort a few aisles back. Blocked ears are our body’s response to atmospheric pressure changes that occur faster than our ears can adjust to (Bhattacharya et al., 2019). Atmospheric pressure describes the weight of air in the atmosphere above a given region of the Earth’s surface (NOAA, 2023), which decreases with altitude. Our bodies are suited to pressure conditions at sea level, allowing sufficient intake of oxygen through saturated haemoglobin within the bloodstream. Subsequently, the average human body can maintain this intake until 10000 ft (around 3000 m) in the air, with altitudes exceeding this likely to result in hypoxia and impairment (Bagshaw & Illig, 2018). Such limits have had implications for commercial flying. Trips in the early era were capped at low altitudes and proved highly uncomfortable: passengers were exposed to chilly winds, roaring engines, and thinner air, and pilots were forced to navigate around geographical obstacles like mountain ranges and low-lying weather irregularities. However, this changed in 1938 when Boeing unveiled the 307 Stratoliner, which featured pressurised cabins. Since then, air travel above breathing limits became possible, morphing into the high-altitude trips taken today (National Air and Space Museum, 2022). Via a process still relevant to us today, excess clean air left untouched by jet engines in combustion is diverted away, cooled, and pumped into the cabin (Filburn, 2019). Carried out in incremental adjustments during ascent and descent, the pressure controller regulates air inflow based on the cockpit’s readings of cruising altitude. Mass computerisation in the late 20th century enabled precise real-time readings, allowing safety features like sensitive pressure release valves, sensor-triggered oxygen mask deployment, or manual depressurisation. However, the sky does indeed dictate the limits, as pressure conditions are simulated at slightly higher altitudes than sea level to avoid fuselage strain (Filburn, 2019). This minor pressure discrepancy plays a part in why we feel weary and tired whilst flying–our cells are working at an oxygen deficit for the duration of the flight. Your yawn just about now proves this point. Time for your first snooze of many… Food, Glorious Food A groggy couple of hours later and it’s either lunch time or dinner, your head isn’t too sure. You wait with bated breath, anticipating the arrival of the flight attendant wheeling the bulky cart through the narrow aisle... Only to be met with a chicken sausage that vaguely tastes like chicken, with vaguely-mashed potato and a vaguely-limp salad on the side. Oh, and don’t forget the searing sweetness of the jelly cup! You’re far from alone in your lukewarm reception of your lunch-dinner. Aeroplane food remains notorious amongst travellers for its supposedly flat taste. Whilst airlines like Thai Airways and Air France have employed Michelin-star chefs to translate an assortment of gourmet cultural dishes to tray table fare (De Syon, 2008; Thai Airways, 2018), the common culprit responsible for the less-than-appetising experience remains – being on a plane. As Spence (2017) details, multiple factors play into how you rate your inflight dinner, many relating to the effects of air travel on our bodies. The ‘above sea level’ air pressure within the plane coincides with higher thresholds for detecting bitterness at 5000-10000 ft (around 1500-3000m), heightening our sensitivity to the tart undertones of everyday foods. Dry pressurised air that cycles through the cabin is about as humid as desert environments, which hampers our smell perception and thus taste. Less intuitively, the loud ambient noise of the plane’s engines also appears to hinder olfactory perception, though the reason as to why remains unclear. Nevertheless, alleviating the grumbling passenger and stomach is an area of interest with a few successful forays. One angle of approach involves food enhancement. Incorporating sensory and textural elements into meals such as chillies and the occasional crunch or crackle can compensate for impaired perception. Interestingly, umami has been observed as the least affected taste sense mid-air (Spence, 2017), inspiring British Airways’ intense and aromatic umami-rich menus – though with the unwitting drawback of threatening to stink up the plane on multiple occasions (Moskvitch, 2015). Meanwhile, Singapore Changi Airport houses a simulation chamber for food preparation in a low-pressure environment, taking it up a notch in both quality and cost (Moskvitch, 2015). Alternatively, passengers can be psychologically tricked into perceiving food to be more appetising than it is in reality. Some examples of this include the use of noise-cancelling headphones, cabin lighting designed for enhancing the appearance of food, or appealing language for describing meals. Both off-ground and in air, it was found that humans were inclined to respond more positively to dishes described in an appetising and detailed manner (Spence, 2017), rather than the vague choices of “sausage or pasta”. Whilst these innovations have covered some ground, De Syon (2008) also notes that sociology can influence our perceptions of food on a plane. The enjoyment of meals is dependent upon core social rituals like dining communally or comforting meal-time habits–both of which are tricky to navigate and achieve on a packed plane with front-on seating. What Goes Up Must Come Down Not long now! Accompanied by the movies you’ve played for the first time in your life and oodles of complimentary tea, there’s about half an hour left until landing. Jolt! The seatbelt sign is bold and bright as you can feel the plane gradually descending–it’s getting bumpy! As your plane rocks about and the airport comes into view as a speck in the distance, your descent is at the mercy of the crosswinds… and turbulence? Not only do these vortices of air cause havoc mid-flight, near cloud bands and thunderstorms (National Weather Service, 2019), they also pose a challenge during landing in the form of local, “clear-air” convection currents invisible on radar. These currents often occur in summer months and in the early afternoon when incoming solar energy is at its highest. In particular, they emerge when the surface of the earth is unevenly heated, including across regions such as the oceans, grassland, or in this case, the pavement near the airport. Consequently, this creates pockets of warm and cool air that rapidly rise and fall, creating downdrafts, thereby trapping planes ( figure 3 ). Luckily, pilots are specifically trained to recognise these surface winds, and can adjust their landing glidepath to suit local conditions forewarned in Terminal Aerodrome Forecasts for a steady, controlled descent (BOM, 2014). Figure 3. Varying glidepath due to local convection currents - note the different types of surfaces. Note. From Turbulence by National Weather Service. National Weather Service, 2019. https://www.weather.gov/source/zhu/ZHU_Training_Page/turbulence_stuff/turbulence/turbulence.htm . Copyright 2019 National Weather Service. Even with its bumpier experiences that draw endless complaints, it is undeniable that commercial aviation has grown tremendously over the century to deliver the safe, efficient and comfortable flights we are accustomed to today. Building upon a history of ingenuity and scientific discovery, it's almost certain that the industry will soar to even greater heights in our increasingly globalised world. Enough talk–you’re finally here! It’s a relief when you clamber from your seat, giving those arms and legs a much needed stretch. Now, time to trod along on solid ground… …and onto the connecting flight. Cheap stopover tickets. Darn it. References Aragão, P. (1995). Airbus A310-221, Swissair AN0521293 . Wikimedia Commons. https://upload.wikimedia.org/wikipedia/commons/9/9b/Airbus_A310-221%2C_Swissair_JP5963897.jpg Bagshaw, M., & Illig, P. (2019). The aircraft cabin environment. Travel Medicine , 429–436. https://doi.org/10.1016/b978-0-323-54696-6.00047-1 Bhattacharya, S., Singh, A., & Marzo, R. R. (2019). “Airplane ear”—A neglected yet preventable problem. AIMS Public Health , 6 (3), 320–325. https://doi.org/10.3934/publichealth.2019.3.320 BOM. (2014). Hazardous Weather Phenomena - Turbulence . Bureau of Meteorology. http://www.bom.gov.au/aviation/data/education/turbulence.pdf Chatfield, C. H. (1928). Monoplane or Biplane. SAE Transactions , 23 , 217–264. http://www.jstor.org/stable/44437123 De Syon, G. (2008). Is it really better to travel than to arrive? Airline food as a reflection of consumer anxiety. In Food for Thought: Essays on Eating and Culture (pp. 199–207). McFarland. Filburn, T. (2019). Cabin pressurization and air-conditioning. Commercial Aviation in the Jet Era and the Systems That Make It Possible , 45–57. https://doi.org/10.1007/978-3-030-20111-1_4 International Air Transport Association. (2024). Global Outlook for Air Transport . https://www.iata.org/en/iata-repository/publications/economic-reports/global-outlook-for-air-transport-june-2024-report/ Let’s Talk Science. (2024). Four Forces of Flight . Let’s Talk Science. https://letstalkscience.ca/educational-resources/backgrounders/four-forces-flight Moskvitch, K. (2015, January 12). Why does food taste different on planes? British Broadcasting Corporation. https://www.bbc.com/future/article/20150112-why-in-flight-food-tastes-weird NASA. (2022). Four forces on an Airplane . Glenn Research Center | NASA. https://www1.grc.nasa.gov/beginners-guide-to-aeronautics/four-forces-on-an-airplane/ National Air and Space Museum. (2022). The Evolution of the Commercial Flying Experience . National Air and Space Museum; Smithsonian. https://airandspace.si.edu/explore/stories/evolution-commercial-flying-experience National Weather Service. (2019). Turbulence . National Weather Service. https://www.weather.gov/source/zhu/ZHU_Training_Page/turbulence_stuff/turbulence/turbulence.htm NOAA. (2023). Air pressure . National Oceanic and Atmospheric Administration. https://www.noaa.gov/jetstream/atmosphere/air-pressure Spence, C. (2017). Tasting in the air: A review. International Journal of Gastronomy and Food Science , 9 , 10–15. https://doi.org/10.1016/j.ijgfs.2017.05.001 Temora Aviation Museum. (2017). DH-82A Tiger Moth . Temora Aviation Museum. https://aviationmuseum.com.au/dh-82a-tiger-moth/ Thai Airways. (2018). THAI launches Michelin Star street food prepared by Jay Fai for Royal Silk Class and Royal First Class passengers . Thai Airways. https://www.thaiairways.com/en_ID/news/news_announcement/news_detail/News33.page Previous article Next article apex back to
- Ear Wiggling | OmniSci Magazine
The body, et cetera Wiggling Ears By Rachel Ko Ever wondered why we have a tailbone but no tail, or wisdom teeth with nothing to chew with them? This column delves into our useless body parts that make us living evidence for evolution- this issue, ear wiggling. Edited by Irene Lee, Ethan Newnham & Jessica Nguy Issue 1: September 24, 2021 Illustration by Quynh Anh Nguyen Human beings fancy ourselves to be quite an intelligent species. With our relatively enormous brains and intricate handling of the five senses, we like to believe that the things we see, touch, smell, taste, and hear, define the boundaries of our universe. Yet, evidence of our shortcomings exists in plain sight on our own bodies. This becomes even more prominent when compared to the furry companions we often assume we are superior to. After living together for almost a decade, my dog is rather sick of me. While she is educated enough to know her name, I no longer even get a turn of a head when I call her. Often, the only response I receive is a wiggle of the ears as she turns them towards me. I, the source of sound, must wait as she considers whether my call for attention is worthy of her time. In this scenario, my dog’s ego might not be the only thing giving her superiority - in the realm of ear wiggling, her abilities are anatomically unattainable to us mere humans. The muscles responsible for this skill are the auriculares, with the anterior controlling upwards and forwards movement, the superior controlling the upwards and downwards movement, and finally the posterior pulling them backwards (1). In other species such as dogs, cats and horses, these muscles have evolved to become intricate over generations, with dogs manoeuvring their ears using 18 muscles, and cats using more than 30 (2). In most human beings, voluntary control of the ears has been almost entirely lost. For the 15 percent (3) of us who can wiggle our ears, the trait is vestigial – effectively useless, except for perhaps readjusting your glasses without using your hands. Despite this, ear wiggling was once a useful functional trait in our ancestral Homo species. Tracing back more than 150 million years (4), a common ancestor of mammals learnt to pivot and curl their ears for evolutionary advantage. It is theorised that before we walked upright, our own primate predecessors directed their ears in response to sound (5). This allowed them to pinpoint sources of danger that were hard to locate while moving on all fours. It was a mechanism comparable to when big cats, like those often featured in Attenborough documentaries, perk up their ears as they prowl through the grasslands. In fact, most of our mammalian relatives (6), other than our closest ape family, have preserved some level of ear wiggling ability, from foxes and wolves to lemurs and koalas. The deterioration of human ear-wiggling began with the emergence of bipedalism. As our ancestors lifted upright, off their knuckles and onto two feet, their entire centre of gravity shifted. This awarded them a wider scope of vision and diurnal activity (7), meaning they began to primarily operate during the day, so humans began relying on vision for many important things: hunting, protecting and surviving. Ear-wiggling's role in showing emotional expressions, such as anger or fear (8), was also replaced with gestures of the hands that were now free to be swung about. With no need for the sophisticated ear machinery that evolution had equipped us with, human beings’ ability to move our ears diminished, while our eyesight drastically improved. It seems that over time, the ear-orienting ability in humans simply died out with evolution. We have not let go of it completely, though. Interestingly, Homo sapiens have retained the neural circuits that were once responsible for ear movement. In the journal Psychophysiology by Steve Hackley (9), a cognitive neuroscientist at the University of Missouri, remnants of this neural circuitry were observed in clinical studies. When stimulated by an unexpected sound, the muscles behind the corresponding ears twitched and curled. Similarly, distraction with sounds of bird songs while attempting a set task kick-started bursts of ear muscle activity. While ear wiggling is no longer required for our survival, we exist as evolutionary fossils. As humans, we now have other options in well-established senses while hearing remains a dominant form of sensory input in other species – a very well-refined one too, if my dog’s ability to recognise the sound of her treat packet opening is anything to go by. While the only thing human ear-wigglers have is a cool party trick, our furry friends have mastered intricate ear control, giving them a paw up on us at least in this race. References: 1. "Auricularis Superior Anatomy, Function & Diagram | Body Maps". 2021. Healthline. https://www.healthline.com/human-body-maps/auricularis-superior#1. 2. "10 Things You Didn’T Know About Cats And Dogs". 2021. Vetsource. https://vetsource.com/news/10-things-you-didnt-know-about-cats-and-dogs/. 3. "Why Can Some People Wiggle Their Ears?". 2021. Livescience.Com. https://www.livescience.com/33809-wiggle-ears.html. 4, 7, 8. Gross, Rachel. 2021. "Your Vestigial Muscles Try To Pivot Your Ears Just Like A Dog’S". Slate Magazine. 5. "Understanding Genetics". 2021. Genetics.Thetech.Org. https://genetics.thetech.org/ask-a-geneticist/wiggling-your-ears. 6. Saarland University. "Our animal inheritance: Humans perk up their ears, too, when they hear interesting sounds." ScienceDaily. www.sciencedaily.com/releases/2020/07/200707113337.htm. 9. Hackley, Steven A. 2015. "Evidence For A Vestigial Pinna-Orienting System In Humans". Psychophysiology 52 (10): 1263-1270. doi:10.1111/psyp.12501.