Search Results
144 results found with an empty search
- ISSUE 1 | OmniSci Magazine
Issue 1: Science is Everywhere Foreword from Dr Jen Marti n From the Editors-in-Chief Hear from the founder and leader of the UniMelb Science Communication Teaching Program! A few words from our four Editors-in-Chief on the inaugural issue of OmniSci Magazine! 2 minute read 2 minute read Columns The body, et cetera Conversations in science Chatter Wiggling Ears By Rachel Ko Let’s take a trip down evolution lane to uncover the story behind everyone’s favourite useless party trick: ear wiggling. 3 minute read Behind the Scenes of COVID-19 with Dr Julian Druce By Zachary Holloway In conversatio n with Dr Julian Druc e. 6 minute read Silent Conversations: How Trees Talk to One Another By Lily McCann What do trees talk about? 5 minute read Science Ethics Cinema to Reality Humans of UniMelb Should We Protect Our Genetic Information? By Grace Law How much is our genetic and biometric data worth? And why are others so keen to get their hands on it? Can We Build the Iron Man Suit? By Manthila Ranatunga Ever wondered what it takes to build the Iron Man suit? Research - Is it For Me? By Renee Papaluca Hear from current research students about their experiences studying science at UniMelb. 4 minute read 4 minute read 4 minute read The Greenhouse Unpacking the Latest IPCC Report — What Climate Science is Telling Us By Sonia Truong Unpacking the latest UN IPCC report on the science behind climate change. 5 minute read Features Our Microbial Frenemies By Wei Han Chong Diseases and pandemics have always been the source of great disasters throughout history, so why don't we do away with them? 7 minute read Where The Wild Things Were B y Ashleigh Hallinan Biodiversity loss is perhaps just as catastrophic as climate change, so let's consider the role of ecosystem restoration in battling this ecological emergency. 6 minute read Understanding the Mysterious Science of Sleep By Evelyn Kiantoro Sleep, our favourite way to wind down and relax. But why do we sleep? Moreover, what are dreams? 6 minute read The Rise of The Planet of AI By A shley Mamuko When does tech become fully integrated into our lives? 7 minute read The Intellectual’s False Dilemma: Art vs Science By Natalie Cierpisz The age-old debate once again resurfaces. Art and science. Two worlds collide 6 minute read Climate Change, Vaccines & Lockdowns: How and Why Science Has Become a Polarising Political Debate By Mia Horsfall How should scientific research and political legislation interact, and what role should they play in public discourse? 6 minute read Sick of Lockdown? Let Science Explain Why. By T anya Kovacevic The mechanisms behind lockdown fatigue - and how to treat it. 6 minute read Let's Torque Competition Winner Bionics: Seeing into the Future By J oshua Nicholls Let's explore the ground-breaking technology that could help Australians suffering from visual impairment. Let's Torque is the premier science communication organisation taking STEM to Victorian schools and undergrad students. They host a science communication competition annually. 5 minute read Let's Torque website
- Life Story of a Drug | OmniSci Magazine
< Back to Issue 8 Life Story of a Drug by Elijah McEvoy 3 June 2025 Edited by Weilena Liu Illustrated by Aisyah Mohammad Sulhanuddin From the mythical visions of church goers who took mushrooms in the infamous ‘Good Friday Experiment’ to the extreme self-reflection of those ‘tripping’ off the traditional South American hallucinogenic tea Ayahuasca (1,2), humans have been painting the extraordinary narratives of psychedelics for thousands of years in thousands of settings. Put simply, psychedelics are a class of psychoactive drugs that can alter your thoughts and senses, inducing wild experiences not thought possible in your brain’s ground state (3). One of the most famous of these drugs is LSD. ‘Lucy in the Sky with Diamonds’ is said to have inspired entire Beatles albums and shown Steve Jobs “that there’s another side to the coin” of life (4,5). LSD is also a psychedelic that stands as an enigma in many regards. It is both naturally derived and synthetically created. It has been tested in psychological therapy and psychological warfare. Even the ‘trips’ experienced by its users entail both unexplainable hallucinations and scientifically proven phenomena. While being lesser understood, the stories of LSD’s enigmatic origins, uses and effects are just as interesting as those that come from its users. The Origins Lysergic Acid Diethylamide (LSD) or ‘acid’ for short is a semi-synthetic chemical compound with humble biological beginnings. LSD is derived from a class of alkaloid metabolite molecules that are naturally produced by the fungus commonly known as ergot. Ergot fungi are members of the parasitic genus Claviceps , which have been infecting staple crops and shaping society long before acid came to distort shapes in the eyes of its users (6). Epidemics of ergotism, a disease caused by these ergot alkaloids after ingesting contaminated crops, swept across Middle Age Europe and led to the deaths of tens of thousands of people (7). Despite credible arguments to the contrary, some historians have even suggested that the Salem Witch Trials may have been sparked by a form of this disease known as convulsive ergotism. Not only were the environmental conditions in 1691 Salem reported to be optimal for ergot growth in the town’s rye, but convulsive ergotism also induces distinct muscle contractions, paranoia and audiovisual hallucinations (8). These symptoms all would have given credit to the claims of bewitchment made by the young girls that instigated the accusations of witchcraft in the town. Aside from death and dark magic, this fungus has also been used as an effective therapeutic across several eras of history. It’s use as a medication for childbirth was recorded as early as 1100 BCE in China, with midwives using ergot or it’s alkaloids to reduce bleeding during birth, expedite delivery or induce an abortion (6,7). It wasn’t until modern pharmacology advanced in the 20th century that scientists began to chemically characterise these ergot alkaloids and use them as the basis to create potent drugs. The story of how LSD was first created and consumed is one that has been immortalised in history books and unofficial holidays. Dr Albert Hoffman, a Swiss biochemist working for the pharmaceutical company Sandoz, first synthesised LSD in 1938 as the 25th substance in a series of lysergic acid derivatives being evaluated by the company (9). Initial testing of this compound indicated it had no unique pharmacological uses beyond those of pre-existing ergot alkaloid derived drugs (9). However, Hoffman couldn’t shake the nagging feeling that LSD-25 had more to offer. After making another batch of the compound 5 years later, Hoffman’s suspicions grew stronger when he was forced to leave the lab early after entering a “dream-like state… [with] a kaleidoscope-like play of colours” (9). A few days later, in a moment that demonstrated both admirable scientific curiosity and blatant rejection of OH&S, Hoffman took a large dose of LSD himself and set in for a trip of a lifetime (9). Like all good scientists, he recorded his experience in a journal, writing at 3pm on 19 April 1943: “visual distortions, symptoms of paralysis, desire to laugh” (9). Hoffman’s notes for the day stopped there. The Uses April 19th has come to be celebrated as ‘Bicycle Day’, commemorating the seemingly endless and surreal bike ride home Hoffman undertook after this self-experimentation. However, a wacky trip was not the only thing that followed this discovery. After Hoffman distributed the drug to his superiors to try for themselves, LSD was sold on the market by Sandoz under the name Delysid. This drug was employed by psychiatrists throughout the 1950s as a treatment for alcoholism or simply ‘psychotherapy-in-a-pill’ for patients suffering psychological trauma (10,11). LSD not only garnered therapeutic interest from scientists but also more nefarious intrigue from the CIA. Seeking to get an upper hand in the department of mental warfare during the Cold War, the CIA bought up 40,000 doses of LSD from Sandoz and performed a variety of unethical experiments on unknowing prisoners, heroin addicts and even other CIA agents in an attempt to understand the drug’s potential for ‘mind control’ under the MKUltra project (12). Moving into the 60s, LSD’s use amongst budding leaders of the Hippie and Yippie movements gave the drug its countercultural status. Harvard Professor Timothy Leary, who was dismissed from his position due to experimenting (literally) with LSD, promoted the drug as an agent of revolution that allowed the youth of America to “turn on, tune in, drop out” (10) of repressive society. Due to its increasing association with these disruptive movements and eventual outlawing by the US government in 1966 (11), acid’s place in culture shifted out of labs and psychologist offices and into illicit recreational usage by experimental hippies and enlightened artists. The Trip Whether accompanied by an experienced monitor or listening to some soothing vinyl records yourself, the experience of taking LSD is predictably unpredictable. ‘Dropping acid’ is unique in that only micrograms of the drug are enough to elicit a palpable psychedelic experience (13), with most users diluting the dosage on tabs of blotting paper or sugar cubes (11). Following consumption, it takes as little as 1.5 hours for LSD to cross the blood-brain barrier, dilate the pupils and bring users to the peak intensity of the drug’s psychological effects (13). The bizarre experiences perceived by those ‘tripping’ on LSD is rooted in a now well-characterised receptor binding interaction in the brain. The nitrogen-based chemical groups of the LSD molecule first anchor themselves within the 5-HT2A serotonin receptors found in the synapses of neurons (14). While the serotonin neurotransmitter typically helps regulate brain activities like mood and memory, LSD binding instead causes the activation of distinct intracellular cascades within these brain cells (3). The importance of this interaction was demonstrated in experiments that proved blocking this receptor can cancel the acid trip all together (3). Recent studies that have further characterised the chemical structure of this interaction have also shown that 5-HT2A forms a lid-like structure that locks LSD into this receptor protein’s binding site and sets the user in for a long trip (14). From these individual cellular interactions, LSD ignites a burst of brain activity. Modern brain scanning technology has revealed that LSD first disrupts the capacity of the thalamus to filter and pass on sensory stimuli from the body to the cortex of the brain. Upon injection of LSD, patient’s brains demonstrated both an overflow of information running between the thalamus and posterior cingulate cortex and restriction of signals going to the temporal cortex (15). Not only does LSD modify the brain’s ability to sort out important stimuli from the outside world, but this small molecule has also been found to temporarily form new connections between different parts of the brain. Hoffman’s recount of how “every sound generated a vividly changing image” (9) on the first Bicycle Day can be explained by the increased connectivity of the brain’s visual cortex on LSD. This causes areas of the brain responsible for other senses or emotions to become involved in creating the images perceived in the user’s head, causing visual hallucinations and geometric distortion that have no basis in real stimuli coming from the eyes (16). In contrast, Hoffman’s feeling of being “outside [his] body” (9) likely came from decreased connectivity between the parahippocampus and retrosplenial cortex, two regions of the brain responsible for cognition. This severance has been correlated with the greater meaning that those tripping on LSD find in objects, events or music along with their characteristic ‘ego dissolution’ (16). This is a phenomenon where users no longer see the world through the lens of their own ‘self’ and instead feel an increased sense of unity with everything around them (17). Very Hippie ideas with a very scientific explanation. The Comedown and Beyond The float back down from the peak of an LSD trip takes up to 10 hours and leaves its users with a variety of stories and outcomes. Contrary to the fearmongering of parents and politicians, LSD does not leave holes in the brain, does not lead to addiction and has not directly led to the death of anyone as a result of overdosage (3). While the risk of a ‘bad trip’ and the feelings of severe anxiety, fear and despair that come with it may be traumatic, these are typically experienced when taking LSD in unsupportive environments without proper mental preparation (13). In fact, when LSD is taken in a manner closer to the controlled ritual practices surrounding psychedelics of old (3), acid is suggested to have long-lasting positive impacts on the user’s attitude and personality (13). It is these experiences that have rejuvenated the field of LSD research from its abrupt stop in the 60s. Modern investigations have picked up where these scientists left off and are evaluating the potential of utilising LSD-assisted therapy to alleviate anxiety and depression. Studies have focused particular attention on addressing these mental health conditions in those suffering from life-threatening illnesses like cancer (18). While some of these experiments lack the controls or data to make strong generalised conclusions, several studies have demonstrated that patients supplied with LSD reported lasting decreases in anxiety surrounding their condition, greater responsiveness to their families and improved quality of life (3,18). All of this is not to promote LSD as a harmless wonder drug. While rare, LSD has been linked to Hallucinogen Persisting Perception Disorder, a condition in which people experience distressing ‘flashbacks’ to the effects and experiences of past psychedelic trips in a normal setting. Additionally, the changes in visual perception, emotion and thought while one is tripping can also cause users to make reckless decisions in dangerous situations (18). However, continuing to wage war against controlled experiments and supervised therapeutic trials with LSD only serves to limit the attempts of scientists in better understanding the balance between this drug’s risks and benefits. While our trip through the life of LSD may end here, there is still much to explore. The greater story of how we use it, how we view it and how it fits into our society is far from over. References Illing S. Vox. 2018 [cited 2024 Oct 23]. The brutal mirror: what the psychedelic drug ayahuasca showed me about my life. Available from: https://www.vox.com/first-person/2018/2/19/16739386/ayahuasca-retreat-psychedelic-hallucination-meditation Majić T, Schmidt TT, Gallinat J. Peak experiences and the afterglow phenomenon: When and how do therapeutic effects of hallucinogens depend on psychedelic experiences? J Psychopharmacol. 2015 Mar 1;29(3):241–53. Nichols DE. Psychedelics. Barker EL, editor. Pharmacol Rev. 2016 Apr 1;68(2):264–355. Gilmore M. Beatles’ Acid Test: How LSD Opened the Door to “Revolver” [Internet]. Rolling Stone. 2016 [cited 2024 Oct 23]. Available from: https://www.rollingstone.com/feature/beatles-acid-test-how-lsd-opened-the-door-to-revolver-251417/ Hsu H. The Lingering Legacy of Psychedelia. The New Yorker [Internet]. 2016 May 17 [cited 2024 Oct 23]; Available from: https://www.newyorker.com/books/page-turner/the-lingering-legacy-of-psychedelia Haarmann T, Rolke Y, Giesbert S, Tudzynski P. Ergot: from witchcraft to biotechnology. Molecular Plant Pathology. 2009 Jul;10(4):563–77. Schiff PLJ. Ergot and Its Alkaloids. American Journal of Pharmaceutical Education. 2006 Oct 15;70(5):98. Woolf A. Witchcraft or Mycotoxin? The Salem Witch Trials. Journal of Toxicology: Clinical Toxicology. 2000 Jan;38(4):457–60. Hofmann A. How LSD Originated. Journal of Psychedelic Drugs. 1979 Jan 1;11(1–2):53–60. Massari P. Harvard Griffin GSAS News. 2021 [cited 2024 Sep 28]. A Long, Strange Trip | The Harvard Kenneth C. Griffin Graduate School of Arts and Sciences. Available from: https://gsas.harvard.edu/news/long-strange-trip Stork CM, Henriksen B. Lysergic Acid Diethylamide. In: Wexler P, editor. Encyclopedia of Toxicology (Third Edition) [Internet]. Oxford: Academic Press; 2014 [cited 2024 Sep 28]. p. 120–2. Available from: https://www.sciencedirect.com/science/article/pii/B9780123864543007442 Stuff You Should Know. Did the CIA test LSD on unsuspecting Americans? - Stuff You Should Know [Internet]. [cited 2024 Aug 25]. (Stuff You Should Know). Available from: https://www.iheart.com/podcast/1119-stuff-you-should-know-26940277/episode/did-the-cia-test-lsd-on-29468397/ Passie T, Halpern JH, Stichtenoth DO, Emrich HM, Hintzen A. The Pharmacology of Lysergic Acid Diethylamide: A Review. CNS Neurosci Ther. 2008 Nov 11;14(4):295–314. Wacker D, Wang S, McCorvy JD, Betz RM, Venkatakrishnan AJ, Levit A, et al. Crystal structure of an LSD-bound human serotonin receptor. Cell. 2017 Jan 26;168(3):377. Sample I. Study shows how LSD interferes with brain’s signalling. The Guardian [Internet]. 2019 Jan 28 [cited 2024 Nov 10]; Available from: https://www.theguardian.com/science/2019/jan/28/study-shows-how-lsd-messes-with-brains-signalling Carhart-Harris RL, Muthukumaraswamy S, Roseman L, Kaelen M, Droog W, Murphy K, et al. Neural correlates of the LSD experience revealed by multimodal neuroimaging. Proceedings of the National Academy of Sciences. 2016 Apr 26;113(17):4853–8. Sample I. LSD’s impact on the brain revealed in groundbreaking images. The Guardian [Internet]. 2016 Apr 11 [cited 2024 Nov 10]; Available from: https://www.theguardian.com/science/2016/apr/11/lsd-impact-brain-revealed-groundbreaking-images Liechti ME. Modern Clinical Research on LSD. Neuropsychopharmacol. 2017 Oct;42(11):2114–27. Previous article Next article Enigma back to
- Believing in aliens... A science?
By Juulke Castelijn < Back to Issue 3 Believing in aliens... A science? By Juulke Castelijn 10 September 2022 Edited by Tanya Kovacevic and Ashleigh Hallinan Illustrated by Quynh Anh Nguyen Next The question of the existence of ‘intelligent life forms’ on a planet other than ours has always been one of belief. And I did not believe. It was probably the image of a green blob with multiple arms and eyes squelching across the ground and emitting noises unidentifiable as any form of language which turned me off the whole idea. But a book I read one day completely changed my mind; it wasn’t about space at all, but about evolution. ‘Science in the Soul’ is a collection of works written by the inimitable Richard Dawkins, a man who has argued on behalf of evolutionary theory for decades. Within its pages, you will find essays, articles and speeches from throughout his career, all with the target of inspiring deep rational thought in the field of science. A single essay gives enough food for thought to last the mind many days, but the ease and magnificence of Dawkin’s prose encourages the devourment of many pages in a single sitting. The reader becomes engulfed in scientific argument, quickly and completely. Dawkins shows the fundamental importance of the proper understanding of evolution as not just critical to biology, but society at large. Take, for instance, ‘Speaking up for science: An open letter to Prince Charles,’ in which he argues against the modelling of agricultural practices on natural processes as a way of combating climate change. Even if agriculture could be in itself a natural practice (it can’t), nature, Dawkins argues, is a terrible model for longevity. Instead, nature is ‘a short-term Darwinian profiteer’. Here he refers to the mechanism of natural selection, where offspring have an increased likelihood of carrying the traits which favoured their parents’ survival. Natural selection is a reflective process. At a population level, it highlights those genetic traits that increased chances of survival in the past. There is no guarantee those traits will benefit the current generation at all, let alone future generations. Instead, Dawkins argues, science is the method by which new solutions to climate change are found. Whilst we cannot see the future, a rational application of a wealth of knowledge gives us a far more sensitive approach than crude nature. Well, perhaps not crude per se. If anyone is an advocate for the beauty and complexity of natural life, it is surely Dawkins. But a true representation of nature, he argues, rests on the appreciation of evolution as a blinded process, with no aim or ambition, and certainly no pre-planned design. With this stance, Dawkins directly opposes Creationism as an explanation of how the world emerged, a battle from which he does not shy away. Evolution is often painted as a theory in which things develop by chance, randomly. When you consider the complexity of a thing such as the eye, no wonder people prefer to believe in an intelligent designer, like a god, instead. But evolution is not dependent on chance at all, a fact Dawkins argues many times throughout his collection. There is nothing random about the body parts that make up modern humans, or any other living thing - they have been passed down from generation to generation because they enhanced our ancestors’ survival. The underlying logic is unrivalled, including by religion. But that doesn’t mean Dawkins is not a man of belief. Dawkins believes in the existence of intelligent extraterrestrial life, and for one reason above all: given the billions upon billions of planets in our universe, the chance of our own evolution would have to be exceedingly small if there was no other life out there. In other words, we believe there is life out there because we do not believe our own evolution to be so rare as to only occur once. Admittedly, it is not a new argument but it had not clicked for me before. Perhaps it was Dawkins’ poetic phrasing. At this stage it is a belief, underlined by a big ‘if’. How could we ever know if there are intelligent life forms on a planet other than Earth? Dawkins provides an answer here too. You probably won’t be surprised that the answer is science, specifically a knowledge of evolution. We do not have to discover life itself, only a sign of something that marks intelligence - a machine or language, say. Evolution remains our only plausible theory of how such a thing could be created, because it can explain the formation of an intelligent being capable of designing such things. We become the supporting evidence of life somewhere else in the universe. That’s satisfying enough for me. Previous article Next article alien back to
- Hidden Worlds: a peek into the nanoscale using helium ion microscopy | OmniSci Magazine
< Back to Issue 2 Hidden Worlds: a peek into the nanoscale using helium ion microscopy How do scientists know what happens at scales smaller than you can see using an optical microscope? One exciting method is the helium ion microscope which can be used to view cells, crystals and specially engineered materials with extreme detail, revealing the beauty that exists at scales too small to imagine! by Erin Grant 10 December 2021 Edited by Jessica Nguy and Hamish Payne Illustrated by Erin Grant The room is white, with three smooth walls and a fourth containing a small sample prep bench and high shelves. In the centre is a desk with three monitors. Next to it, occupying most of the space, is the microscope. Eight feet tall, a few feet wide, resting on an isolated floor surrounded by caution tape; “NO STEP” written in big block letters. Wires protrude from its tiered shape in orderly chaos. It is a clean, technological space; we are ready to explore science. A colleague and I are at the Materials Characterisation and Fabrication Platform of the University of Melbourne to finish off the last steps of a scientific paper I’ve been working on for many years. What I need, as the icing on the cake, is an image. What does my sample look like way down there, at the nanometre scale? Objects that are only nanometres in size are very hard to imagine when we’re used to thinking about metres, centimetres, or maybe even millimetres. We can see those length scales; they are part of our everyday. So, if you’re told that proteins have a diameter of a few nanometres, what does that mean? Well, to be precise, a nanometre is one-billionth of a metre. A human hair, the go-to yardstick for describing small things, has a width between 0.05-0.1 millimetres, which means that if you wanted to slice a hair into nanometre-wide strands you’d end up with nearly 100,000 pieces. Unfortunately, that’s still hard to visualise, but I’ve found that when working with and thinking about scales like this every day, you gain a sort of mental landscape that small things occupy, perhaps not entirely in context, but a space that contains an overall ‘vibe’ of smallness. I first noticed this when I worked in a laboratory that studies the tiny nematode worm C. elegans. These creatures are half a millimetre long, so although they are clearly visible to the naked eye, you need a microscope if you want to use them for science. After looking at these tiny creatures under magnification for many weeks, I came to recognise a feeling almost like being underwater. Upon putting my eyes to the lens, my focus would change from the macroscopic world around me, to one of minutiae. This change in perspective was quite immersive, I almost felt like I was inhabiting that small petri dish too. Working with samples even smaller than that now, I have carried some of that mental landscape with me. It now feels commonplace to imagine tiny systems, such as crystals or molecules which were once foreign. Much of this ability to visualise small things comes from the fact that in many cases, we can actually see them too. Physics has given us many tools with which we can peer into the smallest systems that exist. Helium ion microscopy, which I have come here to carry out, is one such technique. Dr Anders Barlow runs the helium ion microscope (HIM) at this facility. He warmly welcomes me and my colleague into the quiet room and jumps straight into an enthusiastic explanation of the machine – he can tell we’re not just here for some pictures, we want to know the inner workings of the microscope too. The HIM is a bit like the more mature surveyor of minuscule worlds: the electron microscope. While a regular optical microscope uses light to illuminate a sample, the electron microscope uses electrons. When they collide with the sample these electrons can bounce off or lose energy through several mechanisms. The lost energy can go into heat or light, but more usefully, the energy might be transferred to other electrons in the sample, called secondary electrons, ejecting them like a drill removing rocks from a quarry. The secondary electrons can be detected at each point across the sample as the beam is scanned over its surface. If more electrons are detected, then the pixel at that point is brighter compared to areas where there are fewer electrons. This tells you about the topography or composition of the sample at that point on its surface and provides a grayscale image. The HIM works in the same way, but it can generate sharper images because helium ions are heavier than electrons. This is important because the increased resolution of electron and helium ion microscopes is enabled by their quantum mechanical properties - namely the particle’s wavelength. You may have heard about the wave-like nature of light, which is a basic property of quantum mechanics. Particles also have a wavelength, called the de Broglie wavelength, which is inversely proportional to their mass - the heavier the particle, the shorter the wavelength. Having a shorter wavelength allows smaller details to be resolved because of a pesky phenomenon called diffraction. Diffraction occurs when a wave encounters a gap that is of the same or smaller width to its wavelength. When this happens, the wave that emerges on the other side will be spread out. You can think of the features that you want to image as being similar to gaps, so when light, or a particle, interacts with features that are very close together it will spread out, making those features blurry or even invisible. But if you can ensure that the wavelength is smaller than whatever feature you want to see, diffraction will not occur. Interestingly, physicists can actually take advantage of diffraction, and another phenomenon called interference, when they study periodic structures like crystals, but that’s a different article! So, because the de Broglie wavelength is very short for particles with mass, like electrons, an electron microscope can generate images of higher resolution than an optical microscope. Likewise, helium ions are even heavier than electrons because they are composed of one electron, two protons, and two neutrons. This makes them about 7,000 times heavier than a single electron (electrons are very light compared to protons and neutrons!) and consequently the images they can make are very sharp. With our samples ready, lab manager Anders loads my sample into the microscope and begins lowering the pressure in its internal chamber. Having a high vacuum – approximately a billion times lower than atmospheric pressure – is essential because it prevents air from interfering with the helium beam. Making the beam is perhaps the most miraculous part of this technological feat. At the very top of the microscope’s column, there’s a tiny filament shaped like a needle. Not like a needle, in fact, it is the sharpest needle we humans can make. To achieve this, the point is shaped by first extreme heat, and then some extreme voltages until the very tip is composed of only three atoms, reverently referred to as the trimer. Once the trimer has been formed, a high voltage is applied to the needle, resulting in an extreme electric field around the tip. Next, helium gas is introduced into the chamber and individual helium atoms are attracted towards the region of the high electric field. The field is so strong that it strips each helium atom of one electron, ionising it, and these now positively charged ions are repelled from each of the three atoms in the trimer as three corresponding beams. Using sophisticated focusing fields down the length of the column allows Anders to choose only one of the beams for imaging; we are creating a picture using a beam only one atom wide! Generating such a precise beam requires constant maintenance, but once Anders is satisfied with how it looks today, he begins scanning over a large area for what we’ve come to find: tiny proteins stuck to a diamond. In an experimental PhD, you often find yourself answering small incremental questions and today I want to know how well I’ve attached these proteins to my diamond and what the coverage looks like. Other measures have told me that I probably have a lot of them, but the best way to know is to have a look! That’s what Anders does for researchers at the university; he helps us find out whether we have done a good job putting things together or coming up with new techniques. This is something he loves about his job. “I love the exposure I get to many areas of science,” he says, “Imaging of all forms is ubiquitous in research, and the HIM is applicable to most fields, so we see samples from materials science, polymers, nanomaterials, and biomaterials, through to medical technologies and devices, to cell and tissue biology of human, plant and animal origin. I never get tired of seeing what new specimens may come through the lab door.” Unfortunately, the first images we see are very dark and washed out, like a photograph taken in low-light; not many secondary electrons are making it to the detector. To combat this, Anders uses a flood gun to stop charge build up on the surface of the diamond. When the helium ions create secondary electrons, they are ejected from the surface at low speeds. As electrons are negatively charged, the bombarded surface, which now lacks electrons, will become positive and the low energy secondary electrons will be attracted back to the surface instead of making it to the detector. In an electron microscope this is avoided by coating insulators, such as my diamond, with a conductive material like gold. If the surface is conductive, the positive charge that is left behind by the secondary electrons will be offset by electrons from the metallic coating that can flow towards the sudden appearance of positive charges. In this case, the ejected electrons can escape and be detected. However, a coating like this would reduce the resolution of the image; if you want to measure proteins that are twelve nanometres high, but you put a three-nanometre coating over them, you’ll lose a lot of the resolution! To get around this, the HIM uses the flood gun, which lightly sprays the surface with electrons of low energy as the helium beam passes over. This neutralises the surface and lets the secondary electrons escape in the same way as having a conductive layer. Once Anders turns on the flood gun, the contrast increases, allowing us to zoom in on a small region of the diamond, and there they are! Thousands of spherical proteins arranged neatly across the surface, only twelve nanometres in diameter. The sight is spectacular, only one try and we got what we came for. I am three years into a PhD and I’ve become very used to the feeling of disappointment that can accompany new experimental techniques. Things rarely work out the first time around, so to see those little spheres straight away was magical. Dotted across the diamond surface is another, extra, gem. To keep protein nice and happy, you must prepare it in a salty solution. So, when the protein was deposited, some regular table salt, NaCl, came too. We can see this salt in our images as crystals in two distinctive and very beautiful patterns which you can see in the images below. Protein on the surface of my diamond. Each small pale circle is one of these spherical proteins. The first image shows a large creeping pattern, reminiscent of snowflakes or tree roots, which spreads its soft fingers across several hundred nanometres. These crystals have taken on an amorphous pattern, where the crystal structure is broken up rather than being one continuous arrangement of the atoms. The second pattern however, shown in the right image, is what a continuous NaCl crystal looks like. When large enough crystals can form without becoming amorphous they look like precise cubes of various sizes all strewn about. One of my favourite aspects about looking at very small things, is how the patterns you see often mirror those at much larger scales. Look at a fingerprint and you’ll find mountains and valleys, or the roots of a tree and you’ll see a river system. Salt (NaCl) can take on a highly ordered structure shown by the cubic crystals (left) or an amorphous pattern similar in shape to tree roots (right). The astonishing images we get from this single session are all in a day’s work for Anders. He has imaged numerous kinds of cells on all manner of interesting substrates, patterned surfaces covered in needle-like protrusions, and many kinds of man-made materials. Today, there are vials on his prep-bench which, at first glance, look much like jars of hair. However, they are not hair, in fact they are strands of carbon fibre covered in various coatings, awaiting examination. ‘What are your favourite types of samples to look at?’ I want to know. “Cell biology is fascinating,” he says. “We’ve imaged red blood cells, pancreatic cells, stem cells, and various bacterial cells in this microscope. Most often researchers are interested in cell life and death, and the HIM assists by providing high resolution images of the structure and surface topography of the cell membrane.” Recently however, Anders has been helping researchers look at polymer materials for water filtration. “These are hierarchical porous structures, meaning they’re engineered to have pore sizes that vary through the membrane. It is stunning to see the materials at low magnification with large pores, and as we zoom in and in and in, to see new pore sizes become visible at each level, like a material engineered with a fractal quality.” One of the unique things about the HIM, Anders reminds me, is that it’s not just for imaging. Since helium ions are heavy, they carry a higher momentum than electrons. “We leverage the momentum of the ions to actually modify structures too. We can create new surface properties, new devices, new technologies, on a scale that is often too small for any other fabrication technique. This is some of the most exciting work.” If you know anyone who needs some nanoscale drilling done, then the HIM is your instrument! Today’s excursion across the university campus has been thrilling. I got what I came for and I’m excited to find other projects that could benefit from the insight and beautiful images the HIM can provide. Imaging instruments have always fascinated me and I’m looking forward to witnessing how far we will be able to delve into the nanoscale world in the years to come, thanks to the fast pace of engineering and physics research. Previous article back to DISORDER Next article
- Functional Neurological Disorder | OmniSci Magazine
< Back to Issue 8 Functional Neurological Disorder by Esme MacGillivray 3 June 2025 Edited by Steph Liang Illustrated by Esme MacGillivray Content warning: Please be aware that this article includes discussion of mental illness, medical malpractice, and ableism. Functional Neurological Disorder (FND) is very simple to explain. It is a problem with how the brain functions. More specifically, it is a problem with how the brain sends and receives messages, resulting in diverse motor, sensory, and cognitive symptoms. But unlike other neurological conditions, FND does not appear to be caused by any identifiable structural damage to the nervous system. As a catchy metaphor: the brain is a computer, and FND is a ‘software’ problem as opposed to a ‘hardware’ problem. If that all feels frustratingly vague, I’m afraid you are out of luck — but in good company. Since developing FND a year and a half ago, I’ve become closely acquainted with confusion. My own body has felt alien sometimes, and the way others have reacted to my disability has been equally disorientating. Instead of accepting that neuroscience is yet to make sense of FND, many people — including medical professionals — rush to dismiss symptoms, or question their very existence. Understanding this condition is not just a matter of advancing scientific knowledge. Judgement and shame must be replaced with compassion. Turns out FND is far from simple to explain. Symptoms often develop rapidly and ‘out of nowhere’, most typically in adolescence or adulthood (1). These can include functional tics, non-epileptic seizures, limb weakness, paralysis, gait disorders, and speech difficulties (2). The list goes on. From the array of possible symptoms alone, it is clear that FND encompasses a broad range of presentations. Fluctuation and inconsistency can exist even within an individual’s experience. Most days, I appear completely ‘normal’. Sometimes, my disability is glaringly obvious. My FND is confusing and isolating; because there is so little information available, it is difficult to get the support I need. It doesn’t help that myths about this condition are rife within both medical and everyday settings, despite it being one of the most common diagnoses made by neurologists (3). I would like to dispel the idea that FND is just a fancy way of saying that doctors have ruled out ‘real’ neurological conditions. Neurologists can observe positive signs, or patterns of sensation and movement, that indicate functional symptoms, such as a Hoover’s sign for functional weakness (1). Therefore, although the cause of symptoms remains unknown, FND is a meaningful diagnosis. The very label itself represents progression away from the harmful beliefs that defined this condition in earlier centuries. Sometimes I joke about how I might have been treated if I was living in the past. Would people try to exorcise me, or burn me at the stake? Or would I perhaps be sent away to a charming seaside retreat? A mental asylum may have been more likely. Indeed, symptoms of FND once would have awarded me a diagnosis of ‘hysteria’. This label originates from ancient beliefs about the uterus punishing the female body with illness if left infertile, representing an ideological burden forced on suffering women for centuries (4). In the words of Eliot Slater in 1965, the term was “a disguise for ignorance and a fertile source of clinical error” (5). As theories of psychology and neurology were reworked, clinicians began using the term ‘Conversion Disorder’ (4). FND symptoms were misunderstood as manifestations of psychological trauma being ‘converted’ into physical distress (4). It’s an interesting idea, but an inaccurate one. Many people with FND have not experienced significant trauma prior to developing symptoms (5). It is now understood that mental and physical harm, such as a severe illness or injury, may increase the risk of an individual developing FND (1,7). However, this is not a requirement, and certainly not the cause of this condition. Unfortunately, the medical field has not unanimously moved on from the misunderstandings of the past. Since my episodes of collapse, unresponsiveness, and uncontrollable movements were not typical of epilepsy, they didn’t seem to concern the first, second, or even third medical professional who saw me. I am glad that my condition is not inherently life-threatening — but declaring that there is nothing wrong with someone is a far cry from reassuring them that their brain isn’t in danger. The attitudes I encountered leant strongly towards the former. Doctors seemed eager to attribute my symptoms to ‘stress’, and prove that I could directly control what was happening to me, while some even tried to convince my mum that I was faking everything for attention. These experiences are not an anomaly. In fact, being dismissed or disbelieved is an almost characteristic part of having FND (8,9). It often takes years for people to be correctly diagnosed (8), let alone be offered any semblance of support. After a month, I was privileged enough to receive a diagnosis — and compassion — from a neurologist who took me seriously. Despite this, there are lingering impressions from that first month without any understanding or guidance. It urges me to ignore what I know to be true about FND, and about my own body, to entertain the idea that my thoughts are secretly orchestrating everything. I am crazy, or too weak minded to stop choosing thoughts that make me have FND. Don’t ask me how one can subconsciously do something on purpose. I didn’t put this idea in my own head, just like I didn’t put FND in my own head. Nevertheless, these things exist. People with FND are tasked with navigating not only frightening symptoms, but also ignorance, stigma, and shame. Sometimes science doesn’t give us a satisfying answer. Future research can hopefully provide people with FND more concrete answers, including ways of understanding ourselves and possibilities for symptom management and recovery. Health and disability are complex, and we can never fully understand what someone else is going through. When it comes to FND, I barely understand my own body half of the time. Fortunately, I now understand that I deserve to be treated with respect. Compassion doesn’t need to be confusing. It shouldn’t take a breakthrough in neuroscience for people with FND to be listened to and cared for. References 1. Bennett K, Diamond C, Hoeritzauer I, et al. A practical review of functional neurological disorder (FND) for the general physician. Clinical Medicine . 2021;21(1):28-36. doi: 10.7861/clinmed.2020-0987 2. FND Hope. Symptoms. 2012. Accessed May 11, 2025. https://fndhope.org/fnd-guide/symptoms/ 3. Stone J, Carson A, Duncan R, et al. Who is referred to neurology clinics?--the diagnoses made in 3781 new patients. Clinical Neurology Neurosurgery . 2010;112(9):747-51. doi: 10.1016/j.clineuro.2010.05.011 4. Raynor G, Baslet G. A historical review of functional neurological disorder and comparison to contemporary models. Epilepsy & behavior reports . 2021;16:100489. 10.1016/j.ebr.2021.100489 5. Slater E. Diagnosis of “Hysteria”. Br Med J . 1965;1:1395–1399. doi: 10.1136/bmj.1.5447.1395 6. Ludwig L, Pasman JA, Nicholson T, et al. Stressful life events and maltreatment in conversion (functional neurological) disorder: systematic review and meta-analysis of case-control studies. Lancet Psychiatry . 2018;5(4):307-320. doi: 10.1016/S2215-0366(18)30051-8 7. Espay AJ, Aybek S, Carson A, et al. Current Concepts in Diagnosis and Treatment of Functional Neurological Disorders. JAMA neurology , 2020;75(9):1132–1141. Doi: 10.1001/jamaneurol.2018.1264 8. Robson C, Lian OS. “Blaming, shaming, humiliation": Stigmatising medical interactions among people with non-epileptic seizures. Wellcome Open Research , 2017:2, 55. Doi: 10.12688/wellcomeopenres.12133.2 9. FND Australia Support Services Inc. Experiences of Functional Neurological Disorder - Summary Report. Canberra (AU): Australian Government National Mental Health Commision; 2019. 13p. Previous article Next article Enigma back to
- Cosmic Carbon Vs Artificial Intelligence | OmniSci Magazine
< Back to Issue 6 Cosmic Carbon Vs Artificial Intelligence by Gaurika Loomba 28 May 2024 Edited by Rita Fortune Illustrated by Semko van de Wolfshaar “There are many peculiar aspects of the laws of nature that, had they been slightly different, would have precluded the existence of life” - Paul Davies, 2003 Almost four billion years ago, there was nothing but an incredibly hot, dense speck of matter. This speck exploded, and the universe was born. Within the first hundredth of a billionth of a trillionth of a trillionth second, the universe began expanding at an astronomical rate. For the next 400 million years, the universe was made of hydrogen, helium, and a dash of lithium – until I was born. And thus began all life as you know it. So how did I, the element of life, the fuel of industries, and the constituent of important materials, originate? Stars. Those shiny, mystical dots in the night sky are giant balls of hot hydrogen and helium gas. Only in their centres are temperatures high enough to facilitate the collision of three helium-4 nuclei within a tiny fraction of a second. I am carbon-12, the element born out of this extraordinary reaction. My astronomical powers come from my atomic structure; I have six electrons, six protons, and six neutrons. The electrons form teardrop shaped clouds, spread tetrahedrally around my core, my nucleus, where the protons and neutrons reside. My petite size and my outer electrons allow my nucleus to exert a balanced force on other atoms that I bond with. This ability to make stable bonds makes me a major component of proteins, lipids, nucleic acids, and carbohydrates, the building blocks of life. The outer electrons also allow me to form chains, sheets, and blocks of matter, such as diamond, with other carbon-12 atoms. Over the years of evolution, organic matter buried in Earth formed fossil fuels, so I am also the fuel that runs the modern world. As if science wasn’t enough, my spiritual significance reiterates my importance for the existence of life. According to the Hindu philosophy, the divine symbol, ‘Aum’ is the primordial sound of the Cosmos and ‘Swastika’, its visual embodiment. ‘Alpha’ and ‘Omega’, the first and last letters of the Greek alphabet, represent the beginning and ending, that is the ‘Eternal’ according to Christian spirituality. When scientists photographed my atomic structure, spiritual leaders saw the ‘Aum’ in my three-dimensional view and the ‘Swastika’ in my two-dimensional view. Through other angles, the ‘Alpha’ and ‘Omega’ have also been visualised (Knowledge of Reality, 2001). I am the element of life, and within me is the divine consciousness. I am the beginning and I am the end. My greatness has been agreed upon by science and spirituality. In my absence, there would be no life, an idea humans call carbon chauvinism. This ideology and my greatness remained unquestioned for billions of years, until the birth of Artificial Intelligence. I shaped the course of evolution for humans to be self-conscious and intelligent life forms. With the awareness of self, I aspired for humans to connect back to the Cosmos. But now my intelligent toolmakers, aka humans, are building intelligent tools. Intelligence and self-consciousness, which took nature millions of years to generate, is losing its uniqueness. Unfortunately, if software can be intelligent, there is nothing to stop it becoming conscious in the future. Soon, the earth will be populated by silicon-based entities that can compete with my best creation. Does this possibility compromise my superiority? A lot of you may justifiably think so. The truth is that I am the beginning. Historically, visionaries foresaw asteroid attacks as the end to human life. These days, climate change, which is an imbalance of carbon in the environment, is another prospective end. Now, people believe that conscious AI will outlive humans. Suggesting that I will not be the end; that my powers and superiority will be snatched by AI. So the remaining question is, who will be the end? I could tell you the truth, but I want to see who is with me at the end. The choice is yours. References Davies, P. (2003). Is anyone out there? https://www.theguardian.com/education/2003/jan/22/highereducation .uk Knowledge of Reality (2001). Spiritual Secrets in the Carbon Atom . https://www.sol.com.au/kor/11_02.htm Previous article Next article Elemental back to
- Silent conversations | OmniSci Magazine
Have you ever wondered if trees talk to each other? Happily, many scientists across time have had the same thought. So much fascinating knowledge has arisen from their research about the intricacies of trees and the different ways they converse with one another. Chatter Silent Conversations: How Trees Talk to One Another By Lily McCann There are so many conversations that go on beyond our hearing. This column explores communication between trees and how it might change the way we perceive them. Edited by Ethan Newnham, Irene Lee & Niesha Baker Issue 1: September 24, 2021 Illustration by Rachel Ko It’s getting brighter. A long, long winter is receding and warm days are flooding in. I’m not one for sunbathing, but I love to lie in the backyard in the shade of the gums and gaze up into the branches. They seem to revel in the weather as much as I do, waving arms languidly in the light or holding still as if afraid to lose a single ray of sun. If there’s a breeze, you might just be able to hear them whispering to one another. There’s a whole family of these gums in my backyard and each one is different. I can picture them as distinctly as the faces of people I love. One wears a thick, red coat of shaggy bark; another has pale, smooth skin; a third sheds its outer layer in long, stringy filaments that droop like scarves from its limbs. These different forms express distinct personalities. Gum trees make you feel there is more to them than just wood and leaves. There’s a red gum in Central Victoria called the ‘Maternity Tree’. It’s incredible to look at. The huge trunk is hollowed out and forms a sort of alcove or belly, open to the sky. Generations of Dja Dja Wurrung women have sought shelter here when in labour. An arson attack recently blackened the trunk and lower branches, but the tree survived (1). Such trees have incredibly long, rich lives. Imagine all the things they would say, if they could only tell us their stories. Whilst the ‘whispering’ of foliage in the wind may not have significance beyond its symbolism, there are other kinds of communication trees can harness. All we see when a breeze blows are branches and leaves swaying before it, but all the time a plethora of tiny molecules are pouring out from trees into the air. These compounds act like tiny, encrypted messages riding the wind, to be decoded by neighbours. They can carry warnings about unwanted visitors, or even coordinate group projects like flowering, so that trees can bloom in synchrony. If we turn our gaze lower we can see that more dialogue spreads below ground. Trees have their own telephone cable system (7), linking up members of the same and even different species. This system takes the form of fungal networks, which transfer nutrients and signals between trees (3). Unfortunately, subscription to this network isn’t free: fungi demand a sugar supply for their services. Overall, though, the relationship is beneficial to both parties and allows for an effective form of underground communication in forests. These conversations are not restricted to deep-rooted, leaf-bearing beings: trees are multilingual. A whole web of inter-species dialogue murmurs amongst the branches beyond the grasp of our deaf ears. Through the language of scent, trees entice pollinators such as bees and birds to feed on their nectar and spread their pollen (4). They warn predators against attacking by releasing certain chemicals (5). They can even manipulate other species for their own defence: when attacked by wax scale insects, a Persimmon tree calls up its own personal army by alerting ladybugs, who feed on the scales, averting the threat to the tree (6). Such relationships demonstrate the crucial role trees play in local ecosystems and their essentially cooperative natures. Trees can be very altruistic, especially when it comes to family members. Mother trees foster the growth of young ones by providing nutrients, and descendants support their elderly relatives - even corpses of hewn-down trees - through their underground cable systems. These intimate, extensive connections between trees are not so different from our own societal networks. Do trees, too, have communities, family loyalties, friends? Can they express the qualities of love and trust required, in the human world, for such relationships? This thought begs the question: Can trees feel? They certainly have an emotional impact on us. I can sense it as I lie under the gums. Think about the last time you went hiking, sat in a tree’s shade, walked through a local park. There’s something about being amongst trees that calms and inspires. Science agrees: one study has shown that walking in forests is more beneficial to our health than walking through the city. How do trees manage to have such a strong effect on us? Peter Wohlleben, German forester and author of The Hidden Life of Trees, suggests that happy trees may impart their mood to us (9). He compares the atmosphere around ‘unhappy’ trees in plantations where threats abound and stress signals fill the air to old forests where ecosystem relations are more stabilised and trees healthier. We feel more relaxed and content in these latter environments. The emotive capacity of trees is yet to be proven scientifically, but is it a reasonable claim? If we define happiness as the circulation of ‘good’ molecules such as growth hormones and sugars, and the absence of ‘bad’ ones like distress signals, then we may suggest that for trees an abundance of good cues and a lack of warnings could be associated with a positive state. And this positive state - allowing trees to fulfill day-to-day functions, grow and proliferate, live in harmony with their environment - could be termed a kind of happiness in its own right. This may seem like a stretch - after all, how can you feel happiness without a brain? But Baluska et al. suggest that trees have those too, or something like them: command centres, integrative hubs in roots functioning somewhat like our own brains (10). Others compare a tree to an axon, a single nerve, conducting electrical signals along its length (11). Perhaps we could say that a forest, the aggregate of all these nerve connections, is a brain. Whilst we can draw endless analogies between the two, trees and animals parted ways 1.5 billion years ago in their evolutionary paths (12). Each developed their own ways of listening and responding to their environments. Who’s to say whether they haven’t both developed their own kinds of consciousness? If we take the time to contemplate trees, we can see that they are infinitely more complex and sensitive than we could have imagined. They have their own modes of communicating with and reacting to their environment. The fact is, trees are storytellers. They send out a constant flow of information into the air, the soil, and the root and fungal systems that join them to their community. Even if we can’t converse with trees in the same way that we converse with each other, it’s worth listening in on their chatter. They could tell us about changes in climate, threats to their environment, and how we can best help these graceful beings and the world around them. References: 1. Schubert, Shannon. “700yo Aboriginal Maternity Tree Set Alight in Victoria.” www.abc.net.au , August 8, 2021. https://www.abc.net.au/news/2021-08-08/dja-dja-wurrung-birthing-tree-set-on-fire/100359690. 2. Pichersky, Eran, and Jonathan Gershenzon. “The Formation and Function of Plant Volatiles: Perfumes for Pollinator Attraction and Defense.” Current Opinion in Plant Biology 5, no. 3 (June 2002): 237–43. https://doi.org/10.1016/s1369-5266(02)00251-0.; Falik, Omer, Ishay Hoffmann, and Ariel Novoplansky. “Say It with Flowers.” Plant Signaling & Behavior 9, no. 4 (March 5, 2014): e28258. https://doi.org/10.4161/psb.28258. 3. Simard, Suzanne W., David A. Perry, Melanie D. Jones, David D. Myrold, Daniel M. Durall, and Randy Molina. “Net Transfer of Carbon between Ectomycorrhizal Tree Species in the Field.” Nature 388, no. 6642 (August 1997): 579–82. https://doi.org/10.1038/41557. 4. Buchmann, Stephen L, and Gary Paul Nabhan. The Forgotten Pollinators. Editorial: Washington, D.C.: Island Press/Shearwater Books, 1997. 5. De Moraes, Consuelo M., Mark C. Mescher, and James H. Tumlinson. “Caterpillar-Induced Nocturnal Plant Volatiles Repel Conspecific Females.” Nature 410, no. 6828 (March 2001): 577–80. https://doi.org/10.1038/35069058. 6. Zhang, Yanfeng, Yingping Xie, Jiaoliang Xue, Guoliang Peng, and Xu Wang. “Effect of Volatile Emissions, Especially -Pinene, from Persimmon Trees Infested by Japanese Wax Scales or Treated with Methyl Jasmonate on Recruitment of Ladybeetle Predators.” Environmental Entomology 38, no. 5 (October 1, 2009): 1439–45. https://doi.org/10.1603/022.038.0512. 7, 9. Wohlleben, Peter, Jane Billinghurst, Tim F Flannery, Suzanne W Simard, and David Suzuki Institute. The Hidden Life of Trees : The Illustrated Edition. Vancouver ; Berkeley: David Suzuki Institute, 2018. 10. Baluška, František, Stefano Mancuso, Dieter Volkmann, and Peter Barlow. “The ‘Root-Brain’ Hypothesis of Charles and Francis Darwin.” Plant Signaling & Behavior 4, no. 12 (December 2009): 1121–27. https://doi.org/10.4161/psb.4.12.10574. 11. Hedrich, Rainer, Vicenta Salvador-Recatalà, and Ingo Dreyer. “Electrical Wiring and Long-Distance Plant Communication.” Trends in Plant Science 21, no. 5 (May 2016): 376–87. https://doi.org/10.1016/j.tplants.2016.01.016. 12. Wang, Daniel Y.-C., Sudhir Kumar, and S. Blair Hedges. “Divergence Time Estimates for the Early History of Animal Phyla and the Origin of Plants, Animals and Fungi.” Proceedings of the Royal Society of London. Series B: Biological Sciences 266, no. 1415 (January 22, 1999): 163–71. https://doi.org/10.1098/rspb.1999.0617.
- Peaks and Perspectives: A Word from the Editors-in-Chief | OmniSci Magazine
< Back to Issue 7 Peaks and Perspectives: A Word from the Editors-in-Chief by the Editors-in-Chief 22 October 2024 illustrated by Ingrid Sefton In geometry, an apex may refer to the highest point of a solid figure, such as a pyramid. Move to the fields of ecology and evolution, and we find apex predators, overseeing population dynamics atop of the food chain. We too find ourselves situated at an apex position in society – observing, experimenting with, and utilising the world at our feet for scientific innovation and headway. Common amongst these apexes in science is unsurprisingly the emphasis on reaching soaring heights and breathtaking summits. We strive to reach these peaks, endpoints that are perceived to signal scientific greatness and knowledge. We create, we innovate, we explore – all with this vision in mind. Yet, this is not, or rather, should not be the “why” for scientific endeavour. Implicit in reaching the highest point of something is the notion that there is no further to climb. That upon reaching an apex, all that remains is to precariously balance upon this peak and hope not to misstep, tumbling down from great heights. Scientific curiosity and a yearning to understand the science underpinning our existence is not about reaching the envisioned apex. It is instead defined by the steps climbed by us and our predecessors in our journey towards discovery, and in turn, the steps that remain untrod and paths that remain uncharted. The routes we are yet to take will be forever changing. Piloted by the evolving foci of our society, where and how we may next seek to innovate remains undetermined. Infinite possibilities abound. With a birds-eye view, Apex visualises the new levels of human-tech connectivity, ills of antimicrobial resistance, and the fringes of outer space that loom on the horizon; with it, encouraging readers to envisage where the next steps may lie. Yet alongside these perspectives of the expansive, limitless world, Apex invites reflection and hypotheticals. Taking time to pause from the unfaltering upward march of innovation, this issue embraces the breathtaking view of where we are now. Apex guides us to consider time-old traditions and technicalities from a new perspective, celebrating those who have paved the way to the peaks of modern science. Wandering within, across and between disciplines of Science, it is these ruminations along the way that enrich the journey. After all, what is scientific advancement without knowing what we do not know? In the words of Sir Isaac Newton, it is by standing on the shoulders of giants that we hope to see further. So come along, and revel in the expansive view. Let the heights of scientific innovation inspire you, but don’t let such peaks constrain you. Previous article Next article apex back to
- Discovery, Blue Skies... and Partisan Bickering? | OmniSci Magazine
< Back to Issue 2 Discovery, Blue Skies... and Partisan Bickering? Is the era of bipartisan science dead? Do we discover for discovery’s sake? And what happens when optimistic scientific vision meets cold political reality? Journeying from Cambridge, Massachusetts to Melbourne, Australia and tackling everything from deadlocked appropriations bills and economic mandates to the scientist-politician and the prospect of discovery, this feature tries to shine a light on all those questions, as it ponders what it really means to do science in the age of politics. by Andrew Lim 10 December 2021 Edited by Ethan Newnham & Sam Williams Illustrated by Friday Kennedy The chalk dust hangs in the air. Blackboards scrawled with inheritance trees, genetic disease rates and historical minutiae about a long-deceased Oxford don … they all stand still for a moment. As he walks out, the freshman class surrounds the professor (a man once unironically described as “the rock star of biology”), pestering him with incessant questions. Ambling into the sunny fall day, they are joined by more and more – he cracks a joke about being a “photos kind of guy” and lets them take the obligatory selfie. Image 1: Dr Eric Lander teaching freshman biology at MIT in 2012. Looking at the scene, it’s hard to believe that we find here a future member of the Cabinet of the United States. Surely such individuals come from the corridors of Congress or the halls of big business, not this leafy, academic and somewhat-secluded corner of Cambridge, Massachusetts, between an apple tree descended from Isaac Newton’s in the garden and a prototype solar car down the hall. And almost certainly this man, who once steeled himself for a “rather monastic” pure mathematics career and whose main claim to fame was in mapping out the human genome, cannot be the one who someday will be asked to bridge science and politics in what appears an ever more divided union. But he is. In 2021, this very professor, Dr Eric Lander, will be sworn in as Director of the Office of Science and Technology Policy (OSTP), charged by President Joe Biden with maintaining “the long-term health of science and technology” and “guarantee[ing] that [their] fruits … are fully shared”. The mandate belies a time where science increasingly seems to live in the world of partisan political bickering. And so, in an exciting new series of features beginning with this very article, we at OmniSci Magazine are sitting down with those shaping the colliding worlds of science and public service across Australia and around the globe to ask: In a time when Dr Lander’s appointment is heralded by the White House slogan “Science is Back” and Australia sees thirteen Science Ministers in ten years, can science still straddle the political divide, or is the era of bipartisan science dead? What does it mean to discuss national science in an era of international research? And how should scientists and policymakers alike navigate this brave new political world? If not very scientific, it perhaps befits the political side of this feature to begin with the apocryphal. It has been said that The Right Honourable William Ewart Gladstone, the famed four-term 19th-century Liberal Prime Minister of the United Kingdom, was once attending a demonstration by the physicist Michael Faraday, who had just made his first forays into electricity. After the show, Gladstone went to the back of the room to have a word with the inventor: “It’s all very curious, Mr Faraday,” he murmured, “but does it have any practical use?”. The scientist did not miss a beat: “Well, sir,” he responded, “I suspect one day you shall tax it!” Image 2: President John F Kennedy speaking at Rice University in Houston, Texas in September 1962 It’s an old joke that, to many, sums up the cold-hearted and transactional relationship between science and politics. But those of a more optimistic bent would disagree. They would point to the golden age of space exploration, when, over half a century ago, on a sunny September Houston morning, President John F Kennedy famously declared that the United States would “go to the Moon in this decade”. That day, he offered a vision for his country to “set sail on this new sea because there is new knowledge to be gained”, promising an open mandate to learn more about the universe around us, with no reason beyond the sheer wonder of exploration. It was a promise to a nation – one that appeared to transcend party politics. Indeed, it was ironically under the presidency of Richard M Nixon, the man whose campaign had accused Kennedy in 1960 of mass electoral fraud, that Apollo 11 landed on the moon, with Nixon transformed into the man who promised to “not drift, nor lie at anchor…with man's epic voyage into space”. But if overflowing bipartisan support for research as a sheer quest for knowledge was once the case, it certainly seems at odds with political reality today. Both sides of the political aisle seem deeply concerned with the economics of science rather than the prospect of discovery. In Australia, upon the appointment of The Honourable Richard Marles MP as Shadow Minister for Science, Opposition Leader the Honourable Anthony Albanese MP described him as “shadow minister for jobs, jobs and more jobs”. The Shadow Minister himself then highlighted science and technology as key to “micro-economic reform” for Australia. Mere months later, upon The Honourable Melissa Price MP’s appointment as Minister for Science, Prime Minister the Honourable Scott Morrison MP spoke of her portfolio encompassing science and technology “right across the economy, both in civil and defence uses”. To many, this speaks to a wider concern – the neglect of esoteric “blue skies” research (pursuing discovery for discovery’s sake) in favour of scientific research with immediate short-term economic impact. you never quite know what a scientific discovery will lead to or when it’ll be useful (or indeed, vital!) for society. I don’t think our State or Federal Governments are doing enough to fund this kind of science and research, in everything from medical research to physics to studying our threatened species. It needs to be valued a lot more.” Representatives from the Victorian branches of the Australian Labor Party and the Liberal Party of Australia did not respond to our request for comment. It's a trend that Ellen Sandell MP, Deputy Leader of the Victorian Greens, has watched with growing concern. In an exclusive email interview with OmniSci Magazine, she expressed her dismay at the state of “blue skies” science: “Basic research - or the study of science to better understand our world, even if we don’t know where it will lead - is incredibly important. I think the pandemic has shown us just how valuable our scientists are, and Image 3: Ellen Sandell MP on the floor of Victorian Parliament. Image 4: Dr Amanda Caples, Lead Scientist of Victoria However, Lead Scientist of Victoria Dr Amanda Caples, one of the key figures in the Victorian Government’s engagement with research, rejects Sandell’s contention. In her discussion with us, Dr Caples spoke of “an ‘and’ conversation rather than choosing one form of research over another…[a discussion about] hav[ing] a good mix of pure and applied research”. She went on: “most pure research has a purpose or use-case in mind – it’s just not typically driven by commercial interests and the applications are not always evident at the outset. The policy outcome that the Victorian Government is seeking to achieve is to mobilise research knowledge to make it available for use in the economy and community more broadly… Applying the brains of the research community to the problems of industry – and I suggest also of government – is not a novel concept. It is the approach of successful innovation clusters from Cambridge UK to Boston and to Israel. It underpins future industries and high-value jobs, attracts talent and supports service industries. We can do it here in Melbourne too!”. Nonetheless, with all these swirling worries, it’s no surprise that the days of blue-skies research investment seem an enchanting vision – the best that humanity can be, boldly seeking out new frontiers of understanding and knowledge. Yet if exciting, perhaps it is but a mirage. A mere two months after the rhetorical highs of his Houston address, in a White House Cabinet Room meeting not declassified until some 40 years later, Kennedy confided in NASA Administrator James E Webb that if he couldn’t find a practical, political use for the research, “we shouldn't be spending this kind of money, because I'm not that interested in space”. A year after that, as poll numbers and public support for his scientific venture started to wane, Kennedy’s language became sharper. He bluntly told Webb that “we’ve got to wrap around in this country, a military use for what we’re doing and spending in space.” Even in this, space research’s golden age, amidst his lofty rhetoric of human adventure, Kennedy had his eye on the polls, the politicians and the price tags. Image 5: President Biden announcing his plans to form ARPA-H, flanked by Vice President Kamala Harris and Speaker Nancy Pelosi. President Biden and Dr Lander appear to be thinking similarly – at least in terms of searching for a large-scale, popular science mandate that the public will buy into. In the wake of a pandemic, their area of concern seems almost too obvious: health. In his April address to a Joint Session of Congress, President Biden announced his plan to develop an “Advanced Research Projects Agency for Health [ARPA-H]…to develop breakthroughs to prevent, detect, and treat diseases like Alzheimer’s, diabetes, and cancer.” Invoking his son Beau, who died of brain cancer in 2015, he announced increased funding to “end cancer as we know it”, declaring that there was “no more worthy investment…nothing that is more bipartisan…[and] it’s within our power to do it”. A cure for cancer. A man on the moon. Striking, almost visceral promises designed to address the worries of their generation: from national defence in the Cold War to public health amidst a pandemic. It’s something that both Sandell and Caples seem focussed on too. Sandell believes that a continued and increasing emphasis on health research is the way forward for Victoria: “Melbourne is a centre for excellence when it comes to medical research, so the state government has a role in supporting and encouraging this to ensure we maintain that position.” Likewise, Caples thrusts mRNA research into focus, listing one of her key priorities as “driv[ing the] development of frontier technologies such as quantum computing and mRNA.” But to her, the story is not just about the lessons from the pandemic itself, but also about how we rebuild. As she told us, “Nations around the world are investing in science, technology and innovation as they rebuild economies impacted by the coronavirus pandemic. This is because global policymakers understand that a high performing science and research system benefits the broader economy.” This narrative of science as the springboard out of COVID echoes a letter President Biden wrote to Dr Lander upon his appointment, describing science’s power to forge “a new path in the years ahead – a path of dignity and respect, of prosperity and security, of progress and common purpose”. Yet, especially for our stateside counterparts, lofty rhetoric seems no guarantee of avoiding an ugly partisan fight. Just a few years after a Trump White House considered science agency cuts en masse, the issue of funding is back on the congressional table. And it’s not all going well. In the USA, almost all budget laws for federal government agencies, departments and programs begin life as appropriations bills – bills that determine how much money is to be allocated (or “appropriated”) to parts of the government. However, this year, an ongoing Senate deadlock has seen Congress unable to pass any appropriations bills whatsoever. To avert a government shutdown (where no agencies have any money and no federal programs can operate), a stopgap continuing resolution has been implemented, temporarily freezing spending at previous levels, allowing the government to keep operating. On October 18, Senator Patrick Leahy (D-VT), Chair of the Senate Appropriations Committee, announced nine appropriations bills to break the logjam and fund the government (including crucial research agencies) through the 2022 fiscal year. Given the political situation, the bills have been riddled with earmarks – unrelated “pork barrel” projects designed to win over wavering votes (the most famous example of this being a $400 million “Bridge to Nowhere” in Alaska, funded inside a 2005 housing, transport and urban development bill). In just one case of this, $64 million has been carved out of the National Oceanographic and Atmospheric Administration (NOAA) for additional “special projects”. Yet despite these concessions, the bills look to be dragged through a long political battle. In a statement released as Leahy announced his plans, Senator Richard Shelby (R-AL), Vice Chair of the Committee, lambasted them as “partisan spending bills…[and] a significant step in the wrong direction”, vowing to oppose them. On 3rd December 2021, a week before this article’s publication, Congress passed another stopgap continuing resolution following a night of political brinksmanship that brought the government within hours of being defunded and shut down. Regardless, at the time of writing, all appropriations bills remain unpassed and the battle rages on into 2022. It’s a confrontational attitude – and one that seems to not be going anywhere anytime soon. After all, closer to home, we’ve seen university education funding become a political football, with Shadow Education Minister the Honourable Tanya Plibersek MP promising a Labor Party election platform predicated on undoing what she characterises as Morrison government “economic vandalism”. But it’s not all bad news. In her responses, Sandell describes herself as “worried about the hyper-partisan nature of politics at the moment but…buoyed by how science and evidence has been at the heart of our response to the pandemic in Australia, at least here in Victoria.” She sees the issue of a partisan approach to scientific advice as stemming from a greater problem: the non-existence of the scientist-politician. In her words, “When I entered State politics, I was shocked to discover less than 10% of politicians had any form of post-high-school scientific training. I think that’s a real loss for our Parliament and our society…I hope that the pandemic has shown the population and Governments the value of listening to evidence, and that this rubs off into other areas of policy-making.” But she refuses to tie the power of “this scientific type of thinking” to her own values. In her experience, a scientific mode of thinking invites “politicians of all persuasions” to work to integrate their ideology with evidence. A fiscally conservative scientist-politician is just as possible as a social-justice-minded and progressive one – the policies produced might well be different, but the base evidence is constant. Caples is similarly optimistic: “Regardless of politics, the foundational principles of science remains [sic] the same - which is to expand our knowledge of the natural world, to progress society and develop innovations to meet its challenges. While debates – political or otherwise – might take place on the peripheries of scientific learning, these tenets remain the same to build the evidence base.” After all, the pitch Webb made in his 1963 meeting with Kennedy relied not on social justice, progressivism nor Cold War tactics. It was so much simpler: “man [is] looking at three times what he’s never looked at before… and he understands the Universe just looking at those three things…these are going to be finite things in terms of the development of the human intellect. And I predict you are not going to be sorry, no Sir, that you did this.” Image 6: Vice President Kamala Harris administering the oath of office to Dr Eric Lander, as his wife Lori watches on. That notion of the lasting good that discovery can do – its place as a rung on the ladder of human progress, in so many ways beyond the governance of a single place or a single point in time – is a sentiment that echoes on through the decades. In June 2020, while being sworn in, Lander took some time to ruminate about the text on which he was swearing his oath of office. He told Vice President Kamala Harris about the particular page of the Mishnah (a Jewish text compiled from oral tradition) he had used, which discusses “a very special concept in Jewish tradition called Tikkun Olam, the repairing of the world…it says we don’t have to finish the work, but we may not refrain from doing that work…[it] speaks in many ways to the work of this administration, of repairing the world, building back better.” Caples’ final comments to OmniSci Magazine touch a similar note – “as a lapsed pharmacologist, I look at my work through the lens of a receptor-ligand binding model. Where the receptor is the problem that needs to be solved (or the opportunity to be pursued) and my role is to build the ligand that holds together long enough to bind to the receptor and effect change. The ligand of course has to have the right composition and 3-dimensional structure to be effective, that is people and governance framework.” Sandell agrees: “With the big challenges our world is facing - from climate change to pandemics - scientists are needed now more than ever. And for those thinking about going into policy-making, make sure you keep an open mind, look at the evidence and collaborate with others. Our world needs policy-makers who have a genuine desire to solve some of the big problems of our time, not people who are just in it for themselves. Don’t get discouraged by what you might see in Question Time or the depressing nature of politics at times - we need good, curious people from all walks of life to join politics to improve the tenor of debate and ultimately improve our world.” The consensus from all three? Yes – every day of the week, politics seems dirtier, and the policy problems seem greater than ever before. They may not be issues we can finish in our lifetimes – the solutions we create may not work, the “ligands” may not “bind”, forever. Yet because we might well fail is no reason to “refrain from doing that work”; no reason for “good, curious people” not to try. But, to the man who we began with – that energised professor in Building 26 at MIT – such philosophical musings are all yet to come. There, Dr Lander cracks a caustic quip about his students, reminding them that only a few centuries before, people thought their brains were only there to vent heat. It’s almost ironic to consider that his job will eventually hinge on a handful of brains and egos on Capitol Hill. Tikkun Olam: repairing the world. It appears to be the gallant ambition of saints. Or maybe the quixotic endeavour of fools. So complicated it hardly seems worth the effort. Throughout this magazine, you have read stories of science’s remarkable ability to create patterns amidst chaos, find the quantitative inside the qualitative and build order amidst disorder. These pages provide the opposite – offering no data to extrapolate, no empirical test to conduct, no nice charts and graphs to view. Just a messy, complicated ball of disordered contradictions. It was Aristotle who suggested that democracy was inherently dangerous – that this bubbling cauldron of ideas and ideals, pragmatism and ideology, could not be entrusted to the ballot box. And, indeed, the notion that everything would be easier should we just “follow the science”, as though science was some monolithic entity with its own set of ideologies, seems tempting from time to time. But the questions raised here – of immediate benefits weighed against blue-sky thinking; of hard-to-sell science pondered alongside popular mandates; of political leanings measured next to scientific impartiality – don’t fit nicely into our boxes of conservative and liberal; left and right; moderate and progressive. They are far too complex, far too nuanced and far too important to be rendered into a three-word slogan, a thirty-word answer, or even a three-thousand-word feature article. And maybe – just maybe - that’s why they matter. Andrew Lim is an Editor and Feature Writer with OmniSci Magazine. Image Credits (in order): Michael C. ’16, from “Eric Lander, spring rolls, and the New York Times” in MIT Admissions Blog Sept 6, 2012; Robert Knudsen. White House Photographs. John F. Kennedy Presidential Library and Museum, Boston; The Office of Ellen Sandell MP; The Office of the Lead Scientist of Victoria; Melina Mara/The Washington Post; Official White House Photo by Cameron Smith, accessed via the Library of Congress. Previous article back to DISORDER Next article
- Staying at the Top of Our Game: the Evolutionary Arms Race | OmniSci Magazine
< Back to Issue 7 Staying at the Top of Our Game: the Evolutionary Arms Race by Aizere Malibek 22 October 2024 edited by Rita Fortune illustrated by Aizere Malibek Organisms have been competing for biological domination since the beginning of life. Evolutionary adaptations arise from genetic mutations, which propel biodiversification and allow organisms with favourable traits to survive and reproduce. This is the foundation of Charles Darwin’s Theory of Evolution, explaining the rise of antimicrobial resistance and contagious viruses, while also offering solutions to these threats in public health and medicine. Mutations in the DNA of pathogens allow them to adapt to our immunological defences and invade our bodies. Conversely, the variation in our immune cells allows us to detect and defend against pathogens as a counter-adaptation. Medicine has advanced dramatically in the recent decades, with novel vaccines, antivirals and antibiotics being developed quicker than ever before. Unfortunately, persistent pathogens have found a way to survive attacks from our immune systems and drugs, making it difficult to devise an effective cure for these infections. Take HIV, for instance: the virus activates programmed cell-death in our CD4+ T immune cells and alters their metabolism as a survival mechanism (Gougeon, 2003; Palmer et al., 2016). In turn, this directly reduces the immune system’s ability to defend against the virus. This is further complicated by the high mutation rate of HIV, leading to rapid resistance to various treatment options (Gupta et al., 2018). Fortunately, scientific discoveries are helping us develop solutions for infectious diseases. It was found that HIV is susceptible to immune responses in its initial immature stages, which has become a target of the current pursuits in vaccine development for the virus (Picker et al., 2012). Vaccines are beneficial in these cases because they expose memory cells in order to inactive microbial antigens, which are a key cell involved in our active immune responses. This allows our bodies to tackle the pathogens more efficiently, reducing the symptoms and long-term effects of infection. Another emerging treatment option is through CRISPR-Cas9 technology. Originally discovered as a bacterial defence system against viruses, CRISPR allows scientists to precisely edit genes. This technology is being explored not only for its potential to correct genetic disorders, but also as a weapon against pathogens. Researchers are looking into using CRISPR to target viral DNA in infected human cells, cutting it out before the virus can replicate (Mengstie & Wondimu, 2021). If successful, CRISPR could be a game-changer in the fight against diseases like HIV, influenza, and even the next pandemic. However, HIV is just one example of this ongoing evolutionary arms race between pathogens and humans. The phenomenon isn’t restricted to just viruses; bacteria and fungi have also become significant opponents. The rise of antibiotic resistance in bacteria is an alarming and rising public health issue today. Antibiotics are increasingly losing their efficacy due to misuse and overprescription. Pathogens like Escherichia coli ( E. coli ) and Staphylococcus aureus ( S. aureus ) have developed multiple resistance mechanisms, including the production of enzymes that break down the antibiotic molecules before they can exert their effect (Reygaert, 2018). Methicillin-resistant Staphylococcus aureus (MRSA) is a prime example of antibiotic resistance. Initially, methicillin was developed to treat penicillin-resistant strains of bacteria. However, as methicillin became widely used, new strains of S. aureus emerged that could resist the potent drug. MRSA infections are now incredibly difficult to treat and pose a serious public health threat, particularly in hospitals and healthcare settings where immunocompromised patients are most vulnerable (Collins et al., 2010). Vaccines are not as effective against bacteria and fungi due to the more complex structures of these organisms. So how do we stay ahead in this race? One promising area of research is the development of next-generation antibiotics and antivirals. Researchers are now investigating bacteriophages—viruses that specifically infect bacteria—as a potential solution to antibiotic-resistant infections. These phages, which evolve alongside bacteria, could be used to target and destroy harmful bacterial strains without the collateral damage caused by traditional antibiotics (Plumet et al., 2022). While scientific innovation is key to staying ahead in the evolutionary arms race, public health policies play an equally important role. Misuse of antibiotics, for instance, has significantly accelerated the rise of antibiotic-resistant bacteria outside healthcare settings (David & Daum, 2010). Governments and healthcare organisations are now pushing for stricter regulations on antibiotic prescriptions and promoting the responsible use of these drugs. Global collaboration is also essential. Pathogens don’t respect national borders, and the spread of infectious diseases is a global issue. Initiatives like the World Health Organisation’s Global Antimicrobial Resistance Surveillance System (GLASS) are crucial in monitoring and controlling the spread of resistant pathogens worldwide. By sharing data and resources, countries can better coordinate their responses to emerging threats, mitigating the risks posed to global health. The dynamic shifts in power between humans and pathogens continues to unfold in this evolutionary arms race. While scientific innovation is allowing the development of new tools, from vaccines to gene-editing technologies, we must also adopt policies that promote responsible drug use and global cooperation. In this race, staying at the top of our game requires constant vigilance, innovation, and adaptation—because pathogens certainly aren’t slowing down. The stakes are high, but with continued research and collaboration, we have the potential to maintain the upper hand in this ever-evolving battle for survival. References Collins, J., Rudkin, J., Recker, M., Pozzi, C., O'Gara, J. P., & Massey, R. C. (2010). Offsetting virulence and antibiotic resistance costs by MRSA. Isme Journal, 4(4), 577-584. https://doi.org/10.1038/ismej.2009.151 David, M. Z., & Daum, R. S. (2010). Community-Associated Methicillin-Resistant Staphylococcus aureus : Epidemiology and Clinical Consequences of an Emerging Epidemic. Clinical Microbiology Reviews, 23(3), 616-+. https://doi.org/10.1128/cmr.00081-09 Gougeon, ML. Apoptosis as an HIV strategy to escape immune attack. Nat Rev Immunol 3 , 392–404 (2003). https://doi.org/10.1038/nri1087 Gupta, R. K., Gregson, J., Parkin, N., Haile-Selassie, H., Tanuri, A., Forero, L. A., Kaleebu, P., Watera, C., Aghokeng, A., Mutenda, N., Dzangare, J., Hone, S., Hang, Z. Z., Garcia, J., Garcia, Z., Marchorro, P., Beteta, E., Giron, A., Hamers, R., . . . Bertagnolio, S. (2018). HIV-1 drug resistance before initiation or re-initiation of first-line antiretroviral therapy in low-income and middle-income countries: a systematic review and meta-regression analysis. Lancet Infectious Diseases, 18(3), 346-355. https://doi.org/10.1016/s1473-3099(17)30702-8 Mengstie, M. A., & Wondimu, B. Z. (2021). Mechanism and Applications of CRISPR/Cas-9-Mediated Genome Editing. Biologics-Targets & Therapy, 15, 353-361. https://doi.org/10.2147/btt.S326422 Palmer, C. S., Cherry, C. L., Sada-Ovalle, I., Singh, A., & Crowe, S. M. (2016). Glucose Metabolism in T Cells and Monocytes: New Perspectives in HIV Pathogenesis. EBioMedicine, 6, 31–41. https://doi.org/10.1016/j.ebiom.2016.02.012 Picker, L. J., Hansen, S. G., & Lifson, J. D. (2012). New Paradigms for HIV/AIDS Vaccine Development. In C. T. Caskey, C. P. Austin, & J. A. Hoxie (Eds.), Annual Review of Medicine, Vol 63 (Vol. 63, pp. 95-111). https://doi.org/10.1146/annurev-med-042010-085643 Plumet, L., Ahmad-Mansour, N., Dunyach-Remy, C., Kissa, K., Sotto, A., Lavigne, J. P., Costechareyre, D., & Molle, V. (2022). Bacteriophage Therapy for Staphylococcus Aureus Infections: A Review of Animal Models, Treatments, and Clinical Trials. Frontiers in cellular and infection microbiology, 12, 907314. https://doi.org/10.3389/fcimb.2022.907314 Reygaert, W. C. (2018). An overview of the antimicrobial resistance mechanisms of bacteria. Aims Microbiology, 4(3), 482-501. https://doi.org/10.3934/microbiol.2018.3.482 Previous article Next article apex back to
- Real Life Replicants | OmniSci Magazine
< Back to Issue 4 Real Life Replicants by Elijah McEvoy 1 July 2023 Edited by Yasmin Potts and Megane Boucherat Illustrated by Jolin See Hal, Ultron and (of course) the Terminator. Comparisons between these fictional, world-destroying, artificial intelligence systems and those in our current age of AI are seemingly never-ending. As a child born with a lightsaber in hand, I find these sensationalist remarks endlessly entertaining. Not only because it baffles me to see concepts once relegated to the realm of science fiction be discussed as serious news topics, but also because they’ve got their references all mixed up. The current challenge posed by the new wave of generative artificial intelligence doesn’t come in the form of a ruthless, gun-toting Arnie. It comes in the form of replicants. Just like these uncannily human androids from Ridley Scott’s cult classic Blade Runner, the rapidly increasing capacity of AI to talk, look and create like humans is beginning to blur the line between what is authentically human and what is the product of an algorithm. From the posh C3P0 to the snarky Cortana, having a friendly AI sidekick has always been a childhood dream of mine. This dream has now become a reality with the rise in AI chat-bots. At the forefront of these is Replika, an app that enables users to talk to their own personalized AI via the use of text-like messages. For its two million users (1), Replika provides a variety of functions. For some, Replika acts as a friend in times of loneliness; a feature that contributed to its spike in users during the height of the COVID-19 pandemic (2). For others, as founder Eugenia Kuyda suggests, it provides a space for users to “open up” about personal or mental health issues and “feel accepted” by a human-like figure (1). For many though, Replika is a digital romantic partner. While it is easy to snicker at the concept of an AI girlfriend, those with past relationship trauma or those living in environments that may be hostile towards their sexuality have used Replika as an outlet to explore genuine feelings of love in a safe setting (3). However, with such attachment comes the chance for exploitation. As stated by Nir Eisikovits, Director of the Applied Ethics Centre at the University of Massachusetts, his concern is “not whether machines are sentient” but rather our own tendency “to imagine that they are” (4). Like the holographic billboards for the AI “JOI” in Blade Runner 2049, suggestive advertisements and aggressive flirting by the AI itself have all been employed by Replika to encourage users to stay on the app and pay a premium subscription for explicit content (5). While Replika has since removed sexual material, the large backlash from users at this decision (6) highlights the unethically coercive power such mimicry of human personality could have on consumers. For years, we’ve been warned of the danger of manipulative TV advertisements encouraging excessive junk food consumption and gambling. Imagine what could be done when that ad is no longer a 30 second video but instead an anthropomorphized AI tailored exactly to you, your interests and your vulnerabilities. Not only is AI replicating the way we talk, but also how we look. From videos of an animated Tom Cruise to convincing photos of a Balenciaga-wearing Pope (7), advanced deepfake videos and prompt-generated images from AI systems like DALL-E are becoming easier to create by the day (8). While the most prominent use of this technology is currently in the form of harmless memes, it can and has been used for more sinister means. Women across the world have had their faces used in non-consensual deepfake pornography, often as a form of revenge or blackmail (9). Furthermore, a fabricated video of Volodymyr Zelensky surrendering to Vladimir Putin that spread on social media last year proves AI’s unsettling potential in political disinformation (8). While fakes like that of Zelensky may have been taken down quickly due to easily identifiable tells, in many cases the damage has already been done the moment people see these videos or images. Mistrust in the news is heightened and real evidence can be accused of being AI generated, a strategy already implemented by Donald Trump to dismiss evidence of his misogyny (8). Although the current usage of this technology is concerning enough, the degradation of truth within society will only worsen as these replicants become increasingly accurate and faster to produce (8). Still, it is the ability for AI to complete jobs once thought to be uniquely human that will result in the largest change to the current status quo. Latest estimates from Goldman Sachs state that close to 300 million jobs globally could be automated by the current AI wave (10). The threat of job losses due to automation is far from new, stretching all the way back to 1811 with the infamous Luddites protesting factory machines (11). However, generative AI is placing a greater variety of jobs in jeopardy due to its ability to exude human creativity, giving rise to what Stanford Professor Victor R. Lee entitles an “authenticity crisis” (12). One of those jobs is that of writers. A common phrase amongst movie reviewers today is “this could have been written by an AI”. While usually used as a jab against the latest Marvel movie, large language models like Chat GPT that are capable of identifying and mimicking patterns in writing make it more than just a joke. Amongst calls for better conditions for screenwriters, a key demand from the Writers Guild of America in this year's Los Angeles writers’ strike was that AI will not be used to write or rewrite scripts (13). When you combine the growing authenticity of these AI with the greedy desires of major studios, it is not a far cry to suggest that producers may use AI to quickly generate scripts for generic soap operas and cash grab Netflix movies, leaving the human creatives to simply ‘clean-up’ these stories at a cut pay rate. Despite all these concerns, generative AI does have the ability to immeasurably improve society. The capacity of this technology to increase workplace efficiency (10), accelerate scientific progress (14) and constantly amuse us with clips of a rapping Joe Biden is undeniable. With the cat out of the bag, innovation in these areas cannot nor should not be halted completely. However, if sci-fi movies have taught me anything useful, it’s that we should not be blinded by the potential of scientific progress. Whether it be through governmental action to regulate the use of AI in industry or the scientific development of better deepfake-spotting technology to help stifle disinformation, implementing safeguards around AI is crucial in avoiding its “ethical debt” (15). Whilst looking to the world of science fiction as an indication of our future may be a bit far-fetched, it may also be a needed reminder of the world scientists should try not to replicate. References Tong A. AI company restores erotic role play after backlash from users ‘married’ to their bots [Internet]. The Sydney Morning Herald. 2023 [cited 2023 May 14]. Available from: https://www.smh.com.au/world/north-america/ai-company-restores-erotic-roleplay-after-backlash-from-users-married-to-their-bots-20230326-p5cvao.html Clarke L. ‘I learned to love the bot’: meet the chatbots that want to be your best friend. The Observer [Internet]. 2023 Mar 19 [cited 2023 May 14]; Available from: https://www.theguardian.com/technology/2023/mar/19/i-learned-to-love-the-bot-meet-the-chatbots-that-want-to-be-your-best-friend The rise and fall of replika [Internet]. [cited 2023 May 14]. Available from: https://www.youtube.com/watch?v=3WSKKolgL2U Eisikovits N. AI isn’t close to becoming sentient – the real danger lies in how easily we’re prone to anthropomorphize it [Internet]. The Conversation. 2023 [cited 2023 May 14]. Available from: http://theconversation.com/ai-isnt-close-to-becoming-sentient-the-real-danger-lies-in-how-easily-were-prone-to-anthropomorphize-it-200525 Cole S. ‘My ai is sexually harassing me’: replika users say the chatbot has gotten way too horny [Internet]. Vice. 2023 [cited 2023 May 14]. Available from: https://www.vice.com/en/article/z34d43/my-ai-is-sexually-harassing-me-replika-chatbot-nudes ‘My wife is dead’: How a software update ‘lobotomised’ these online lovers. ABC News [Internet]. 2023 Feb 28 [cited 2023 May 14]; Available from: https://www.abc.net.au/news/science/2023-03-01/replika-users-fell-in-love-with-their-ai-chatbot-companion/102028196 How to spot an ai-generated image like the ‘balenciaga pope’ [Internet]. Time. 2023 [cited 2023 May 14]. Available from: https://time.com/6266606/how-to-spot-deepfake-pope/ Wong M. We haven’t seen the worst of fake news [Internet]. The Atlantic. 2022 [cited 2023 May 14]. Available from: https://www.theatlantic.com/technology/archive/2022/12/deepfake-synthetic-media-technology-rise-disinformation/672519/ Atillah IE. AI could make deepfake porn an even bigger threat for women [Internet]. euronews. 2023 [cited 2023 May 14]. Available from: https://www.euronews.com/next/2023/04/22/a-lifelong-sentence-the-women-trapped-in-a-deepfake-porn-hell Toh M. 300 million jobs could be affected by latest wave of AI, says Goldman Sachs | CNN Business [Internet]. CNN. 2023 [cited 2023 May 14]. Available from: https://www.cnn.com/2023/03/29/tech/chatgpt-ai-automation-jobs-impact-intl-hnk/index.html McClelland C. The impact of artificial intelligence - widespread job losses [Internet]. IoT For All. 2023 [cited 2023 May 14]. Available from: https://www.iotforall.com/impact-of-artificial-intelligence-job-losses Hollywood writers are on strike over an AI threat that some are warning is coming for you next. ABC News [Internet]. 2023 May 5 [cited 2023 May 14]; Available from: https://www.abc.net.au/news/2023-05-06/hollywood-writer-s-strike-over-pay-and-artificial-intelligence/102296704 Lee VR. Generative AI is forcing people to rethink what it means to be authentic [Internet]. The Conversation. 2023 [cited 2023 May 14]. Available from: http://theconversation.com/generative-ai-is-forcing-people-to-rethink-what-it-means-to-be-authentic-204347 The AI revolution in science [Internet]. [cited 2023 May 14]. Available from: https://www.science.org/content/article/ai-revolution-science Fiesler C. AI has social consequences, but who pays the price? Tech companies’ problem with ‘ethical debt’ [Internet]. The Conversation. 2023 [cited 2023 May 14]. Available from: http://theconversation.com/ai-has-social-consequences-but-who-pays-the-price-tech-companies-problem-with-ethical-debt-203375 Previous article Next article back to MIRAGE
- Big Bang To Black Holes: Probing the Illusionary Nature of Time | OmniSci Magazine
< Back to Issue 4 Big Bang To Black Holes: Probing the Illusionary Nature of Time by Mahsa Nabizada 1 July 2023 Edited by Elijah McEvoy and Caitlin Kane Illustrated by Aisyah Mohammad Sulhanuddin Time is ubiquitous: it governs our daily lives, marking our existence from birth to death. We measure time in seconds, minutes, hours, days or years, using man-made tools like clocks and calendars which reinforce the perception that it is tangible and objective. In fact, the most used noun in English is time (1). However, delving into the realms of science and philosophy, the true nature of time becomes illusionary. We can acknowledge our personal perception of time is inherently subjective. Our experiences of time vary depending on our surroundings, emotional state and physical state. For example, while time may seem to drag on when we're bored or anxious, it can pass quickly when we're having a good time. Although we imagine time to be objective, it could be merely an illusion resulting from the limitations of our perceptions and the conditions of our observation. Exploring these questions requires scientific perspectives, so let's delve into the enigmatic physics of time. In three-dimensional space, physical spaces are fixed, meaning that we can revisit the same location repeatedly. For example, we may visit our favourite restaurant as many times as we wish. However, this is not the case with time. Time only moves forward, and we cannot go back to a previous moment; it belongs to the past and cannot be retrieved (2). This unidirectional nature of time is referred to as the arrow of time. Time is believed to originate from the Big Bang, the event that marked the beginning of the universe (3). From that point, time has progressed towards the present, where you are currently reading this article, and it continues to move into the future. The second law of thermodynamics, known as entropy, plays a crucial role in representing the forward movement of this arrow of time (4). Entropy refers to the state of disorder, uncertainty, or randomness in a system like a measure of the disorder present in the universe. At the moment of the Big Bang, the universe had low entropy, with matter and energy concentrated and organised. However, since that initial state, matter in the universe has been expanding and moving away from each other, leading to an increase in entropy and transforming the universe into a high entropy system. The concepts of the arrow of time and entropy, guided by the second law of thermodynamics, allow for a distinction between the past and the future and play a pivotal role in the existence of life. Without entropy and the resulting change there would be no discernible difference between events that occurred 1000 years ago and events happening in the present. Furthermore, the progression of life from birth to death can be explained through the phenomenon of entropy, as governed by the second law. However, on the quantum level, the behaviour of particles becomes more complex. Just as there is no inherent forward or backward direction in vast space, at the molecular level, the concept of entropy is not as apparent. While time appears to have a clear direction on the macroscopic level, when observing the particles that make up the universe, time can flow and operate in multiple directions. The laws of physics that govern these particles do not distinguish between the past and the future. They describe the behaviours of physical systems without differentiating between temporal directions. The theory of general relativity, proposed by Albert Einstein, provides a fundamental framework for understanding the workings of spacetime (5). According to the theory of general relativity, the presence of mass or energy causes a distortion in the fabric of spacetime, which in turn affects the motion of other objects. For example, it describes gravity as the curvature of spacetime caused by the presence of mass and energy. Essentially, spacetime can be thought of as a fluid that is influenced by both gravity and velocity. This theory has illuminated not just the behaviour of celestial bodies and the vast structure of the universe, but also enhanced our understanding of the intricate interplay between space, time, and matter. Within Einstein’s theories, time dilation is a scientific phenomenon that can be explored through a thought experiment known as the twin paradox (6). It demonstrates how the perception of time can vary between two individuals who experience different levels of motion or gravitational forces. Time dilation is not limited to the twin paradox or space travel; it is a fundamental concept in understanding the relationship between time, motion, and gravity. It has been experimentally confirmed and plays a significant role in our understanding of the universe. Imagine you, Twin A, are stationary on Earth while your sister, Twin B, is traveling in a rocket at a constant speed. Due to the sideways motion of the rocket, Twin B’s clock will appear slower to Twin A since her path through spacetime is longer due to the effects of special relativity and time dilation. Therefore, from Twin A’s perspective on Earth, time seems to pass slower on the moving rocket. However, from Twin B’s perspective, Twin A is the one in motion and therefore Twin A’s clock appears slower to her. Both frames of reference seem to indicate that the other's clock is slower, which seems contradictory. In reality, both observations are correct because the laws of physics remain the same in both frames of reference. Now, the question arises: who is actually younger? According to each twin's viewpoint, the other twin is younger. However, in reality, only one twin can have aged less than the other. Fortunately, there is a resolution to this paradox. When Twin B turns around to return to Earth, she undergoes acceleration which means the usual laws no longer apply. As a result, Twin B will be younger than her Earth-bound sister, Twin A, upon returning to Earth due to the effects of acceleration. To explain this effect during the period of acceleration, we need to consider that general relativity causes time dilation in the presence of gravitational fields. Gravitational time dilation means that clocks run slower in stronger gravitational fields compared to clocks in weaker gravitational fields. During the acceleration phase, when Twin B’s rocket is returning to Earth, her time now appears to go slower, while the clock on Earth appears to run faster. This phenomenon is similar to the extreme time dilation experienced near the edge of a black hole, known as an event horizon (7). From the observer’s frame of reference outside the black hole, time slows as an object approaches the event horizon, until it appears time has stopped. Hence an object falling into the black hole would appear to have stopped, completely frozen. Even though it governs our daily lives and despite our ability to measure it with great accuracy, there is no definitive answer to what time truly is. From the subjective experiences of our daily lives to the enigmatic physics of the Big Bang and black holes, the illusionary nature of time unveils an array of complexities, reminding us that this fundamental concept remains one of the most captivating mysteries of our existence. As famously stated by Einstein: "For us believing physicists, the distinction between past, present, and future is only a stubbornly persistent illusion” (8). References Study: “Time” Is Most Often Used Noun [Internet]. www.cbsnews.com . 2006. Available from: https://www.cbsnews.com/news/study-time-is-most-often-used-noun/ Davies P. The arrow of time. Royal Astronomical Society [Internet]. 2005 Feb 1 [cited 2023 Jun 4];46(1):1.26–9. Available from: https://academic.oup.com/astrogeo/article/46/1/1.26/253257 University of Western Australia. Evidence for the Big Bang [Internet]. Evidence for the Big Bang. 2014 p. 1–4. Available from: https://www.uwa.edu.au/study/-/media/Faculties/Science/Docs/Evidence-for-the-Big-Bang.pdf Hall N. Second Law - Entropy [Internet]. Glenn Research Center | NASA. 2023. Available from: https://www1.grc.nasa.gov/beginners-guide-to-aeronautics/second-law-entropy/ Norton JD. General Relativity [Internet]. sites.pitt.edu . 2001 [cited 2022 Feb]. Available from: https://sites.pitt.edu/~jdnorton/teaching/HPS_0410/chapters/general_relativity/ Perkowitz S. Twin paradox | physics | Britannica. In: Encyclopædia Britannica [Internet]. 2020 [cited 2013 Jun 14]. Available from: https://www.britannica.com/science/twin-paradox Hadi H, Atazadeh K, Darabi F. Quantum time dilation in the near-horizon region of a black hole. Physics Letters B [Internet]. 2022 Nov 10 [cited 2023 Jun 11];834:137471. Available from: https://www.sciencedirect.com/science/article/pii/S0370269322006050 A Debate Over the Physics of Time | Quanta Magazine [Internet]. Quanta Magazine. 2016. Available from: https://www.quantamagazine.org/a-debate-over-the-physics-of-time-20160719/ Previous article Next article back to MIRAGE









