Search Results
144 results found with an empty search
- Meet OmniSci Writer Rachel Ko
Curious what an OmniSci Editor-in-Chief actually does? We spoke to Rachel about drawing anatomy, interviewing a med student hero, and helping build the the science communication universe! Rachel is a writer and Editor-in-Chief at OmniSci, now in her first year of the Doctor of Medicine. For Issue 4: Mirage, she is writing an interview with science communicator, Dr Karen Freilich. Meet OmniSci Writer and Committee Member Rachel Ko Rachel is a writer and Editor-in-Chief at OmniSci, now in her first year of the Doctor of Medicine. For Issue 4: Mirage, she is writing an interview with science communicator, Dr Karen Freilich. interviewed by Caitlin Kane What are you studying? I am currently studying a Doctor of Medicine and I’m in my first year. Before that, I was studying a Bachelor of Biomed. What first got you interested in science? Exposure through education, stuff I’d studied in school. It sparked interests outside of school and I realised it was something that I wanted to pursue as a career. Something that really reinforced my love for science was doing a major in human structure and function, so anatomy. I really enjoyed that I could weave it in with my other passions in things like art and drawing and painting. I was able to look at science in a way that was really the artsy side of science. It's something I’ve tried to pursue with OmniSci as well. Do you have any advice for younger students? Don’t be afraid of trying all areas of science. Because I loved a specific area of science so much, I wanted to make sure that was what reeled me in as compared to other things. I tried a bunch of research projects, some of them I didn’t really love and I had to stick it out to the end, but then I could tick that off my list as having done that, and never have to do it again. But then I did another project which was 3D modelling a bone. It was just me sitting there for hours with a pen, drawing the bone in 3D space, which was very much up my alley. Don’t be afraid of trying everything, even if it feels like a waste of time in the moment. It isn't, it’s the process of filtering out and finding out what you love. And I’m still in that process. I have no idea what kind of medicine I want to go into, but I’m going by process of elimination and finding where I fit in the realm of science in that way. How did you get involved with OmniSci? Like I said, I like the artsy side of science. I actually sought out a few non-science related magazines at uni. I’ve always been into journalism and I love writing as well, so it made sense for me to look into that in my undergrad years. OmniSci emerged during those undergrad years and I thought, “Perfect!” I was a columnist first and I started doing some illustrations as well. Then I dropped my role at Farrago completely just to concentrate on this because I found it was a really nice intersection of what I love to do. My column was about vestigial features, like useless body parts, which I thought would be a fun, light column–I just wanted something cute and fun. So I started that, and now… I’m in the committee. What is your role at OmniSci? I am an Editor-in-Chief at the moment, and I have also written one of the pieces for Issue 4, purely because of my love for writing and contributing. I might step in as an illustrator at some point… I’m hoping in this break I can sit down and draw a little more than I used to. As Editors-in-Chief, we work with the committee to coordinate the things being published and try to envision what role OmniSci plays within the science communication universe. And whilst figuring out what we’re publishing and putting out to the world, we’re also trying to include the rest of the student community. We also have social events so that we can share our love for…whether it’s science or art or writing… any of the parts that OmniSci encompasses. We're there to keep everything chugging along!. What is your favourite thing about contributing at OmniSci so far? The people that you meet along the way. I do eventually want to pursue science communication myself, alongside medicine. I don’t know what that will look like, but I know that the people who will be involved in that space are the people you meet at the moment. Even with the committee, chatting about things and discussing interests has been super enlightening. When you expand that to the rest of the OmniSci community, I think it’s super super rewarding. Also seeing something tangible come out of it all… I just love seeing the magazine come together. When we printed it—though not ideal for the environment for every issue—to have the paper magazine in our hands from last year was super rewarding to see. Can you give us a sneak peak of what you're working on this issue? Well as Editor-in-Chief, the whole issue is kind of our collective baby! Personally I interviewed Dr Karen Freilich, a GP specialising in sexual health and working in education as well. I was lucky enough to have her as one of my sexual health elective tutors. She also started a podcast when she was in medical school called Humerus Hacks. It is basically super famous within the med student community. It sounds like such a simple thing, but just to hear her and the friend she started the podcast with talk things through and make things entertaining… it was such a fresh way of getting the information out. It’s kind of what we do at OmniSci: make science more accessible to people who might feel intimidated by those bigger, wider topics that they might never have ventured into. And the whole point of a magazine is to get information out to more people, and to spark interest, and show people that these things exist. As a med student, I kind of came across it as naturally as you could have. And as she was my tutor, I thought it was such an important opportunity to talk to her about why she did it and where she sees science communication going. What do you like doing in your spare time (when you're not contributing at OmniSci)? Well, there’s the anatomical art. I haven’t had a lot of time to do that… and I’ve been really wanting to try and incorporate it into my study but I spend a lot of time on one painting so it wouldn’t have been time efficient. But my plan for this break is to go to a bar, get myself a drink and just paint on my own… relax in that way. Otherwise, I play the violin, something I like to destress. It’s actually been a surprisingly big part of my life in med because there's a medical student orchestra. The rehearsals are quite long but it’s actually quite worth it to be sitting there not thinking about medicine. And yeah, just catching up with friends, going cafe hopping, bar hopping, that’s what I like to spend time doing. Which chemical element would you name your firstborn child (or pet) after? Let me pull up a visual aid. I actually don’t mind chemistry, but after year twelve I’ve kind of put a line between myself and it. Have you seen that trend online where people are pulling up words that would be really pretty baby names if they didn’t mean what they meant? Ooh, I’m going to go with Livermorium, Liv for short. Element 160. There’s some good ones—you could go Rutherfordium, Ruth for short. Read Rachel's articles Silent Conversations: How Trees Talk to One Another Wiggling Ears Our Microbial Frenemies Hiccups The Evolution of Science Communication Law and Disorder: Medically Supervised Injection Centres “Blink and you’ll miss it”: A Third Eyelid? Mighty Microscopic Warriors!
- Interviewing Dr Karen Freilich | OmniSci Magazine
< Back to Issue 4 Interviewing Dr Karen Freilich by Rachel Ko 1 July 2023 Edited by Caitlin Kane Illustrated by Pia Barraza Science in the real world is never straight-forward. The realm of medicine and health is particularly intricate, riddled with myths and marvels. This makes the healthcare journey a difficult one to navigate, both for the patient, and for the provider. It is undeniably a field where an ever-evolving myriad of factors makes the bedside experience vastly different to the textbooks. In my first year studying medicine, I am constantly realising that a strong understanding of the fundamentals is often a saving grace, while learning to dispel the mirage of medicine as a simple science. Enter Humerus Hacks , a podcast recommended to me in the first week of medical school by peers who had walked the treacherous road before. A guiding light in the murky waters of medical education, Karen and Sarah’s playful banter lays out high-yield medical content with catchy mnemonics and gracious advice. In this interview, we had the special opportunity to talk to Dr Karen Freilich, one of the hosts of Humerus Hacks , about her journey in medicine so far as a young GP, and the story of how she created a podcast that masters the art of science communication in a perfect marriage of education and entertainment. Tell us about your journey with science, and your career so far. I’ve just completed my GP Fellowship training after about 12 years of study. It’s a relief to be done —medicine is a long slog! I’ve had a brilliant time and been fortunate to take part in exciting studies. I took some time off clinical medicine to complete a Masters of Reproductive and Sexual Health Research in London (LSHTM) as well as completing a Diploma of Obstetrics (DRANZCOG). I currently teach at the University of Melbourne’s Medical School as a tutor in Sexual Health, and write and train high school sexual health educators through Elephant Ed. I work as a GP most days of the week, in a clinic with a focus on sexual and reproductive health and I’m a proud medical abortion and contraception provider. I’m also fortunate to work at Monash in the Sexual Medicine and Therapy Clinic, and work together with the Australasian Society for HIV, Viral Hepatitis and Sexual Health Medicine (ASHM). It’s a tricky balance wearing a number of hats, but I love the diversity. Unsurprisingly everything I do is focused in sexual and reproductive health through clinical work, education, advising and science communication. My career is certainly tailor-made to my interests and passion, and took quite some time to get to this point! I love being able to educate on both a one-on-one and broader level on sexual and reproductive health care, particularly through a reproductive justice lens. What was the inspiration behind Humerus Hacks ? In the early years of medical school, my mate Sarah and I used to spend hours and hours trying to memorise different antibiotics and the differences between them. It felt incomprehensible to have to learn not only a new science, but an entirely new language behind it. It felt like a Duolingo course! So in order to scrape through exams, we made silly little stories to try and remember the differences between gentamicin, amoxicillin etc.. Fast forward a few years and Sarah and I ended up running a weekly study group for the year below us, filled with our mnemonics and silly stories. We developed a bit of a cult following (if I say so myself!). It seemed there was a real appetite for otherwise tedious and dry medical education made fun and entertaining. In final year, we both ended up on placements requiring huge drives. We turned to podcasts for ‘edutainment’ — and found there simply were none. So we did what everyone in 2016 was doing, bought a microphone and recorded our own. We were a bit mortified at the start and convinced we wouldn’t get internships if our future employers heard us swearing and being inappropriate online, so we hid our faces and were anonymous with our names. Fortunately it turned out we had nothing to be nervous about, and Humerus Hacks was a hit. Sarah is a musical genius and recorded the intro song with her band. It’s now been over 50 episodes and over 150,000 downloads. We’re often in the iTunes Medical Podcasts Top 10! The inspiration has and always will be pure study laziness — trying to make studying more interesting, fun and accessible and ultimately, more memorable. What is the process of developing and recording an episode? Me, Sarah, or another co-host or friend (Callum, Bridget, Robbie and Dan to name a few!) sitting on a couch with a microphone and chinwagging about a topic. If we’re lucky, maybe some prep. I’d love to suggest it’s more fancy than that! I have brilliant colleagues who play an integral role. Alex edits our episodes and does a brilliant job. And Bella creates fantastic art for the episodes. Sometimes I play around on Canva too for some social media. Shout out as well to our friends who helped with some graphic design and audio. It’s definitely a team effort, and so many people to thank for their ongoing contributions and support. What is your relationship with your audience like? Our audience sends us messages and emails all the time — even if we haven’t made an episode in months! It’s a joy to receive any messages and warms our hearts every time. We get the most delightful and lovely messages. We also get a lot of requests which I wish we could keep up with more, the irony of doing our own exams over the past few years! We try to respond to all messages and keep up with requests. Knowing that our silly little mnemonics has helped anyone with exams is a huge joy. How has science communication evolved since you began? Mnemonics have been a huge part of medicine for a very long time. In fact, I have my uncle’s Medical Mnemonic book from 1958! Some of them have aged terribly, unsurprisingly, but many we still use to this day. So, we are far from inventing the wheel. In saying that, the boom of social media and podcasts over the past few years has lent itself to subspecialised Instagram pages, YouTube channels and more podcasts than I could have ever imagined. Making medical education (and science communication) fun has become much more mainstream and accepted as a genuine study tool. Who knew, making dry education entertaining actually works…! What has been the biggest challenge in your science communication journey? Hands down, time. I run Humerus Hacks with a group of excellent friends and colleagues, but we all happen to be medical students or doctors. Unsurprisingly, it means we are all always bogged down with shift work, exams, and burn out. Humerus Hacks is a labour of love. So we make an effort if and when we can, without any time pressure. I wish we had more time! What role would you say science communication plays in your daily practice? I’m a GP with a special interest in sexual medicine as well as a sexual health tutor for medical students. I also write and train individuals to run high school sexual health education. I’ve also been fortunate to be a guest host on ABC Breakfast Radio under ‘Doctor Breakfast’ providing science communication for a number of medical topics. So, it plays a huge role in my daily practice! I particularly enjoy the interplay of small scale science communication through one-on-one patient interactions compared with larger scale communication through radio, teaching and podcasts. They balance each other really well, and I enjoy the individualised, tailored approach whilst simultaneously thinking of the broader public health messaging. What role would you say science communication plays in society generally? There is so much misinformation floating around. As a huge fan of social media and TikTok myself, I can see how these avenues can be both a wonderful source of information but simultaneously promote unnuanced, oversimplified and often blatantly incorrect health messaging. Social media (including podcasts) provides a really accessible, often free avenue for science information that is otherwise inaccessible. However, we have a responsibility to ensure the information is correct, up to date, and safe. Social media loves a quick snap messaging, but science is almost always more nuanced and complex. A 30 second TikTok often unsurprisingly misses the mark! So, accurate and accessible science communication is the key — the hard thing is making it fun and interesting. What are your immediate goals in science communication this year, and what do you hope to achieve in science communication in the long-term? Great question! I am thoroughly enjoying my career balance at the moment. It’s a great mix of GP clinic, sexual medicine and therapy clinical work, sexual health teaching, and radio/podcasting. I’d love to make more Humerus Hacks episodes now that I’ve finished my own training and have (hopefully) both more knowledge and time! I’ve put together a SPHERE Sexual and Reproductive Health podcast focusing on upskilling clinicians to provide medical abortion and contraception in primary care. I am also loving radio work and would love to keep going with this. I may or may not delve into the TikTok world… watch this space! Long term, hopefully ongoing science communication in the field of sexual and reproductive healthcare. What advice would you give to students exploring the world of science communication? Social media is a game changer that had only just begun when I was a student. TikTok, Instagram etc all provide a free and accessibly way to both gain knowledge and skills, and to educate others. Science students in all disciplines have such incredibly knowledge and insight, and if you’re interested, there’s a willing and enthusiastic audience out there. The phrase ‘see one, do one, teach one’ forever rings true. Teaching and providing science communication helps your own education, and has always been my favourite learning tool. Finally, and I cannot emphasise this enough, being a student is long, tedious, and exhausting. Enjoy the process and look after yourself and your colleagues as a priority! ------------------- It is undeniable that Humerus Hacks is a project succeeding on its steadfast mission to uncover the mirage of medicine. Through a blend of education and entertainment, it reveals the intricate realities of science in health, as a complex and ever-changing landscape that demands a strong foundation of knowledge and willingness to adapt. We extend our heartfelt gratitude to Dr Karen Frielich, for not only agreeing to talk to us, but also for all of her work to demystify the healthcare journey, both for the professional, and for the patient. You can check out 'Humerus Hacks' on Spotify , on Apple Music , or online! Previous article Next article back to MIRAGE
- Neuralink: Mind Over Matter? | OmniSci Magazine
< Back to Issue 7 Neuralink: Mind Over Matter? by Kara Miwa-Dale 22 October 2024 edited by Weilena Liu illustrated by Aisyah Mohammad Sulhanuddin What if I told you that you could control a computer mouse with just your thoughts? It sounds like something straight out of a sci-fi movie, doesn’t it? But this isn’t fiction… Welcome to the brain-computer interface, a device which is able to record and interpret neural activity in the brain, enabling direct communication between your mind and a computer. Tech billionaire Elon Musk founded ‘Neuralink’, a company developing coin-sized brain-chips that can be surgically inserted into the brain using a robot. Neuralink made headlines a few months ago by successfully implanting their brain-chip, dubbed ‘Telepathy’, into their first trial patient, Noland Arbaugh. While there were a few technical glitches, it seems to be working relatively well so far. Noland has been able to regain some of the autonomy that he lost following a devastating spinal cord injury. He is even able to play video games with a superhuman-like reaction speed, thanks to the more direct communication route between the Neuralink implant and his computer. But it doesn’t stop there; Elon Musk’s ultimate vision is to have millions of people using Neuralink in the next 10 years, not only to restore autonomy to those with serious injuries, but to push the boundaries of what the human brain is capable of. He thinks that Neuralink will allow us to compete with AI and vastly improve our speed and efficiency of communication, which is ‘pitifully slow’ in comparison to AI. Neuralink implants may seem like an incredible leap in scientific technology, but what will happen if they become normalised in our society? Let’s imagine for a moment … Jade, April 7th 2044 Shoving my jacket into my bag, I dart out of the hospital and pull onto the main road in my Tesla. As I speed past the intersection, I see a giant advertisement plastered on a sleek building: ‘Neuralink: Seamless Thoughts, Limitless Possibilities’. When I signed up to get a Neuralink implant, all I’d thought about were the infinite possibilities of how it would change my life – not what could go wrong. I wish I could say that I was brainwashed into getting a Neuralink, or that I had no choice in the matter. But the truth? I got an implant so that I could be ‘ahead of the crowd’ and because I was so frustrated at feeling inadequate compared to the other doctors at my hospital. When I graduated medical school, at the top of my class, people told me that I would do ‘great things’ and ‘change the world’. I followed the standard path, landing my first job and climbing the ranks one caffeine-fuelled shift at a time. I loved my job. Every time I saved a life, it felt like all my effort had paid off. Then Neuralink happened. I still remember the day Dr Maxwell - a doctor I worked with - proudly announced that he’d ‘bitten the bullet’ and gotten the implant. Over the coming weeks, we watched in awe: his diagnoses were quicker and more accurate than any human could imagine, and he went home as energetic as he’d arrived. Now, the extra hours I spent figuring out tricky cases were no longer a representation of my work ethic, but a symptom of my inadequacy compared to the Neuralink-enhanced doctors. One by one, my colleagues signed up for the implant. I hated the thought of having something foreign nestled in my brain, recording my brain’s neurons every second of the day. I told myself I wouldn’t let peer pressure get to me. But, as I watched those around me get promoted while I continued to work endless days, the frustration started to build. One afternoon, the department head came into my office to tell me that they were reconsidering the renewal of my contract. I wasn’t ‘keeping up’ with my Neuralink-enhanced colleagues. “We respect your personal decision, of course,” she said with hollow politeness. I wasn’t keen on being pressured into it, but at the same time, I genuinely believed that the implant would improve my life. When I told my friends and family about getting an implant, they were concerned. They tried to list all the things that could go wrong, but I came up with enough reasons to convince myself that it was the right decision. Once they saw how incredible the Neuralink device was, I thought, they would want one too. *** I’m jolted back to reality as the car veers slightly left, and I manually yank the wheel to correct it. Perhaps my implant glitched for a second… *** Everything changed after I had my Neuralink implanted. I was the only person in my family who had one, although a couple of friends did. At first, I felt invincible. The phenomenal speed with which I was able to come up with previously challenging diagnoses was thrilling. I was able to process enormous amounts of data and draw connections that I had never been able to before. It was addictive to feel that I was working at my full potential, using my newfound ‘superpower’ to save more lives than ever. About a month in, my thoughts began racing uncontrollably, until I felt like I was drowning in a flood of information. Sometimes, the input was so overwhelming that my head pounded and I struggled to breathe. My thoughts didn’t even feel like mine anymore. Family and friends started to grow more and more distant from me. This device was stuck inside my brain like superglue, and sometimes I just wanted to dig it right out of my skull. When I asked the doctor about removing it, he looked at me and smirked, “Why on earth would you want to get rid of such a game-changing device? Neuralink’s the new normal, honey. Get used to it.” *** A honk startles me as a car zooms past, nearly colliding with mine. I turn into a quieter street to regain my composure. But then – suddenly – thoughts of accelerating the car bombard my mind – so loud that I can barely hear myself think. The speedometer rises from 60 to 80 to 100 km an hour. I desperately try to disconnect my Neuralink from the car, to manually override the system – anything that will slow the car down. I start pushing random buttons hoping that I will get some kind of response. A red light flashes on my dashboard. ERROR. SIGNAL DISRUPTED BY UNKNOWN USER. I look up and meet the panicked eyes of a woman pushing a man in a wheelchair. Noah, April 7th 2044 The sun makes its final, glorious descent below the horizon, painting a beautiful array of pinks and oranges across the sky. I take a deep breath as Sophia, my support worker, pushes me along the road. We’re on our way to the grocery store, just in time for the end of day specials, which are all I can afford right now. Since my accident, I’ve tried my best to appreciate what I have, but it isn’t easy. Some days, I’m filled with rage as I struggle to complete daily tasks that I did on autopilot before my accident – back when I wasn’t confined to a wheelchair. It’s been hard to come to terms with this new body that I’m stuck with, and all the ways it seems to betray me. I miss the simple things – going to the grocery store by myself or playing board games with friends. But most of all, I miss working as an architect. I loved seeing my clients’ faces light up as they imagined the memories they would make in the new homes I had designed. This sense of satisfaction was taken from me the moment I was paralysed from the neck down. It’s why I’m so desperate to get a Neuralink implant. I would get one right this second if they weren’t so expensive. The Neuralink device isn’t covered by my insurance because the government claims that it wouldn’t be ‘cost effective’. While it won’t restore movement in my arms and legs, this implant would give me some precious freedom back. Maybe if I keep saving and take out a loan, I’ll have just enough to cover it and get my life back … *** “God, these Tesla drivers think they own the road!” I chuckle at Sophia, as a Tesla races towards the crossing in this 40km zone. As we begin to cross the road, I realise that the Tesla is showing no signs of slowing down. The car swerves violently, hurtling towards us without mercy. Sophia’s face pales as she frantically tries to push me out of the road. I squeeze my eyes shut, bracing for impact. Bibliography: Cernat, M., Borțun, D., & Matei, C. (2022, April). Human-Computer Interaction: Ethical Perspectives on Technology and Its (Mis) uses. In International Conference on Enterprise Information Systems (pp. 338-349). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-39386-0_16 Fridman, Lex. (Host). (2024, August 3rd). Elon Musk: Neuralink and the Future of Humanity (No 438). [Audio podcast episode]. In Lex Fridman Podcast. https://lexfridman.com/elon-musk-and-neuralink-team/ Jawad, A. J. (2021). Engineering ethics of neuralink brain computer interfaces devices. Perspective , 4 (1). https://doi.org/10.23880/abca-16000160 Oravec, B. Neurotechnology, Ethical Privacy, and Information Technology. Knighted , 36. https://www.mga.edu/arts-letters/docs/knighted-journal/Issue-6.pdf#page=37 Youssef, N. O. A., Guia, V., Walczysko, F., Suriyasuphapong, S., & Moslemi, C. (2020). Ethical concerns and consequences of Neuralink. Natural Science. https://rucforsk.ruc.dk/ws/files/75503337/NIB3_Group1_Neuralink.pdf Previous article Next article apex back to
- The Power of Light | OmniSci Magazine
< Back to Issue 4 The Power of Light by Serenie Tsai 1 July 2023 Edited by Yasmin Potts and Tanya Kovacevic Illustrated by Pia Barraza Light is often a symbol of greatness, and rightly so, with its ability to be both visible and invisible. It exists in the form of wavelengths, which we view as a multitude of colours. However, the powers of light extend beyond that: light has the potential to manipulate the way we see things, resulting in mesmerising and sometimes mind-boggling illusions. Colour is nothing without light Light is a form of electromagnetic radiation that lies on a spectrum. Due to our limited ability to see these electromagnetic waves, we are only able to see what is characterised as visible light [1]. Colours exist as different wavelengths in a rainbow-coloured order, with red being the longest wavelength and violet being the shortest wavelength, and these colours are detected by cone-shaped cells in our eyes [2]. There are two types of common light rays outside of our visible light range, ultraviolet and infrared light, positioning animals who can detect these to have superior vision [3]. Moreover, as colours and lights exist in the form of wavelengths, temperature can affect what is seen. For example, hot objects radiate short wavelengths, changing the colour we see, such as a hot flame having a range of red to blue colours, because of the way heat radiates from it [1]. Role of light in the mirage There is an age-old question: what would you do with the power to be invisible for a day? Well, the ability to do this is not that far into the future, with many scientists developing methods to make this a reality. Magicians use a common trick of placing mirrors strategically for a disappearing act. The use of mirrors reflects light away from the object so all we see is empty space because our eyes are programmed to view light as a straight line, so we struggle to process it any other way [4]. So far, this has worked successfully to disappear objects on a small scale. However, scientists are finding ways to amplify this technique to disguise larger items or even a person. A recent viral TikTok video is baffling people as to how a mirror can reflect an object hidden behind a piece of paper. Let’s unpack the science behind this trick. When light rays hit an object, photons of light are reflected off it in all directions, and some of these rays will hit the mirror. So, when you look at the object at a certain angle, you can also see it being reflected into the mirror, despite having a boundary in-between [5]. Similarly, this sort of illusion can be seen in nature itself. There is an optical phenomenon in the desert, which produces a mirage image on the ground. Because heat affects wavelengths of light, a warm surface on the ground can bend the rays of light from the sun upward, creating what is known as an inferior image. For example, this could make it seem like there is water on the ground, when in fact it is a reflection of the sky because an image of a distant object can be seen below the actual position of the object. Likewise, if there was cool air underneath, it would create a superior image [6]. This is all due to a temperature gradient created between the ground and the atmosphere above it [7]. Invisibility in the movies Violet from The Incredibles and the Fantastic Four heroine, the Invisible Woman, can both become invisible at their own will. While these examples are only in the movies, there is some truth here. Light can be manipulated to create an illusion, although it is unlikely to appear as realistic as an invisibility cloak. A more theoretically possible form of light manipulation would be the advanced technology portrayed in movies such as Marvel and Harry Potter. It features hovercrafts and a flying car, respectively, that possess the ability to camouflage themselves against their background. This is done through reflective plates, which become a mirror to match the surrounding objects and reflect light away to conceal the object. Another example of a cinematic light-based mirage is in the movie Now You See Me, which includes a series of magic tricks. In one scene, a character is shown to stop rain mid-air and control its movement with his hands. Sorry to ruin the magical illusion, but this one is merely a simple trick of strobe lights flashing repeatedly at the right frequency which makes it seem like the rain is stopped in mid-air. It also requires some movie magic and a large-scale rain machine to control the droplets [8]. There has been so much progress on movie-making to make creative imaginations a reality. For example, there is a new focus on transformation optics, the application of metamaterials to manipulate electromagnetic radiation. Metamaterials are designed with unique patterns to interact with light and other energy forms artificially. For example, Pyrex glass and oil have the same refractive index, so if you put these items together, the refraction of light against these objects can make it disappear out of view [9]. This is an easy trick you can try at home. Overall, light has a multitude of abilities that are still untapped. However, there is hope in society's ability to take advantage of technology and discover more uses for light, and its ability to evade the human eye. We could soon be having magic shows worthy of contending with even the most bizarre movies. References Visible Light | Science Mission Directorate [Internet]. science.nasa.gov . Available from: https://science.nasa.gov/ems/09_visiblelight#:~:text=WAVELENGTHS%20OF%20VISIBLE%20LIGHT Fara P. Newton shows the light: a commentary on Newton (1672) “A letter ... containing his new theory about light and colours...” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2015 Mar 6;373(2039):20140213–3. Animals See a World That’s Completely Invisible to Our Eyes [Internet]. All About Vision. [cited 2023 Jun 26]. Available from: https://www.allaboutvision.com/eye-care/pets-animals/how-animals-see/ David R. Smith Group [Internet]. people.ee.duke.edu . Available from: http://people.ee.duke.edu/~drsmith/transformation-optics/cloaking.htm Nicholson D. How does the mirror know what’s behind the paper? Explained! [Internet]. Danny Nic’s Science Fix. 2023 [cited 2023 Jun 26]. Available from: https://www.sciencefix.co.uk/2023/04/how-does-the-mirror-know-whats-behind-the-paper-explained/ Richey L, Stewart B, Peatross J. Creating and Analyzing a Mirage. The Physics Teacher. 2006 Oct;44(7):460–4. Li H, Wang R, Zhan H. The mechanism of formation of desert mirages. Physica Scripta. 2020 Feb 11;95(4):045501. Now You See Me 2 [Internet]. Framestore. 2016 [cited 2023 Jun 26]. Available from: https://www.framestore.com/work/now-you-see-me-2?language=en Puiu T. Human-sized invisibility cloak makes use of magic trick to hide large objects [Internet]. ZME Science. 2013 [cited 2023 Jun 26]. Available from: https://www.zmescience.com/science/physics/human-sized-cloak-hide-large-objects-543563/ Previous article Next article back to MIRAGE
- When Dark Matters | OmniSci Magazine
< Back to Issue 5 When Dark Matters Ingrid Sefton 24 October 2023 Edited by Celia Quinn Illustrated by Louise Cen To put it simply, the entire visible universe is huge. In the scheme of it, we really are just tiny dots on a floating rock, in a vast and constantly expanding cosmos. Yet, as it turns out, that’s not even close to the full story. All the visible objects, planets and galaxies contribute less than 15% of the mass in the universe. The other 85%? Nobody knows for certain, but it has a name. Dark matter. More can be said about what dark matter is not, than what it is. It isn’t the baryonic or “normal” matter such as protons, neutrons and electrons which comprise our visible world. It also isn’t antimatter, composed of subatomic particles with opposite charges to normal matter. Instead, dark matter interacts with normal matter in a manner entirely different to that of antimatter. It’s not a type of black hole, nor simply a form of radiation, or a type of massless particle. So, what can be conclusively said? Essentially, nothing. As the name suggests, dark matter emits no light and therefore is not visible in the way normal matter is, making it difficult to observe. In fact, dark matter has only been “observed” by way of its gravitational effects. Therefore, we know it must have mass in order to be able to interact with visible matter gravitationally. It’s also imperative for it to be big enough to cause the massive gravitational effects seen in galaxies (Lochner et al., 2005). Estimates place the mass-energy content of the cosmos as being composed of 26.8% dark matter, 68.3% dark energy and a relatively miniscule 4.9% normal matter (Greicius, 2013). The terms dark matter and dark energy are often thrown around somewhat interchangeably. However, they explain distinct aspects of observed gravitational and physical phenomena. Dark matter can be thought of as an invisible substance which is only seen through its effects on gravity - the unexplained gravitational forces that hold together rapidly rotating galaxies and stopping them from flying apart. Dark energy is then the force responsible for pushing these clusters of galaxies and the universe apart, accelerating the rate of expansion of the universe (NASA/WMAP Science Team, 2013). Given the lack of answers about what dark matter is, an interesting question to ponder is how its existence was even discovered. Swiss astronomer Fritz Zwicky was the first to propose the idea of “dark matter”. His observations of the Cloma galaxy cluster led him to suggest if individual galaxies within the cluster were only held together by the gravitational force of visible mass, the galaxies should fly apart due to their high velocity (American Museum of Natural History, 2000). He termed this mysterious force responsible for binding galaxy clusters together “dark matter”. It wasn’t until the 1970s that Vera Rubin became the first person to establish the existence of dark matter through her work with spiral galaxies. Spiral galaxies aren’t stationary. They rotate, with stars different distances from the centre moving in roughly circular orbits around this centre. The highest concentration of visible stars is found within the core region of a galaxy, leading to the assumption that the majority of mass, and therefore gravity, should also be concentrated there. An implication of this is the expectation that the farther a star is from this gravitational centre of a galaxy, the slower its projected orbital speed should be (American Museum of Natural History, 2000). However, alongside astronomer Kent Ford, Rubin made the puzzling observation that stars in both the centre and outer regions of any galaxy were moving at the same speed (American Museum of Natural History, 2000). Her calculations provided convincing observational evidence of Zwicky’s theory. The presence of a significant mass of invisible matter in the outer regions of a galaxy would create an even, spherical distribution of matter, gravitationally explaining the observed rotation of galaxies and their velocity distribution (NASA/WMAP Science Team, 2013). Fifty years later and experimental evidence still remains the only “proof” of dark matter we have, having been unable to directly detect dark matter. Despite this, a majority of scientists are confident in its existence. Rubin’s insight into the velocity distribution of galaxy rotation curves is amongst some of the most convincing observational evidence for the presence of dark matter. Also supporting its existence are the various discrepancies that arise in the process of gravitational lensing. Gravitational lensing occurs when an emitted source of light is deflected or distorted by the gravitational field of a large mass. Based upon the degree of deflection, the gravitational potential of the object can be calculated, alongside the amount of matter in the lensing object (Xenon Dark Matter Project, 2022). Yet, the strength of this gravitational lensing observed in many galaxy clusters is significantly greater than that calculated from visible matter alone. These inconsistencies point to the existence of unseen mass, or dark matter, as a convincing explanation for the observed lensing effects. It’s become clear that the standard model of physics, explaining the different particles and forces comprising the visible world, cannot be used in attempting to explain dark matter. In response, researchers are exploring a number of avenues to find hypothetical new particles. Amongst the most likely candidates for the composition of dark matter are two classes of particles: Weakly Interacting Massive Particles (WIMPs) and axions. WIMPs are distinguished as a class of particles created thermally in the early universe at very high temperatures, while axions originate predominantly from non-thermal mechanisms (Griest, 2002). Compared to WIMPS, or other known type of particles, axions would be thousands of times lighter but also significantly more abundant than WIMPs (Darling & Knight, 2022). Given the infinite potential to invent hypothetical substances that resolve the enigma of dark matter, experimentation to find these particles has significant challenges. Current research efforts are focused on the detection of such particles. More than a kilometre underground in Stawell, Victoria, the Stawell Gold Mine has been converted into an underground laboratory – one with no light, no noise, and no radioactivity to interfere with dark matter signals (Lippincott, 2023). Here, an experiment known as DAMA/Libra, which started in Italy in 1998, is being replicated. For two decades, what is suspected to be dark matter has been detected at the same time each year in Italy. The Stawell Lab is seeking to verify these results, operating below the equator to determine any potential effect of seasonal interference from the Earth (Darling & Knight, 2022). The research utilises the technology SABRE (Sodium iodide with Active Background REjection), which are sodium iodide crystals that emit flashes of light if a sub-atomic particle hits the nuclei of atoms within the crystals (Darling & Knight, 2022). Hence, if a particle of dark matter hits a nucleus, a tiny flash of light should be created. Simultaneously, researchers at the University of Western Australia have been working on the detection project ORGAN (Oscillating Resonant Group Axion), in order to determine the presence of axions (McAllister, 2022). Despite not having detected any dark matter signals thus far, such experimentation has still offered important insights. Not detecting dark matter within a certain mass range and level of sensitivity allows exclusion limits to be set around the possible characteristics of axions. This tells researchers where to stop looking and, instead, where they should be focusing their resources and efforts. Despite the disarray around “solving” the conundrum of dark matter, alongside its less than reassuring name, it’s not actually something that people should be scared about. The gravity that dark matter is responsible for enables our existence, with dark energy having allowed the expansion of the early universe to become what we see, and don’t see, today (Xenon Dark Matter Project, 2022). Detecting the presence of dark matter is about advancing our understanding of the size, structure, and future of the universe. Current research approaches may seem slightly haphazard, attempting to find something that has never been detected and may not even exist. But when pursuing strange cosmological phenomena beyond our understanding, taking a wild stab in the dark may be exactly what we need to do. References American Museum of Natural History (2000). Vera Rubin and Dark Matter . Retrieved September 1, 2023 from https://www.amnh.org/learn-teach/curriculum-collections/cosmic-horizons-book/vera-rubin-dark-matter Darling, A., & Knight, B. (August 20, 2022). The search for dark matter . ABC News. https://www.abc.net.au/news/2022-08-21/dark-matter-particle-physics-sabre-experiment-stawell-victoria/101113010 Greicius, T. (March 21, 2013). Planck Mission Brings Universe Into Sharp Focus. NASA. https://www.nasa.gov/mission_pages/planck/news/planck20130321.html Griest, K. (2002). WIMPs and MACHOs . In P. Murdin (Ed.), Encylopedia of Astronomy and Astrophysics: CRC Press. Lippincott, H. (August 9, 2023). Researchers dig deep underground in hopes of finally observing dark matter. The Conversation. https://theconversation.com/researchers-dig-deep-underground-in-hopes-of-finally-observing-dark-matter-211075 Lochner, J. C., Williamson, L., & Fitzhugh, E. (2005). Possibilities for Dark Matter. Retrieved August 29, 2023 from https://imagine.gsfc.nasa.gov/educators/galaxies/imagine/titlepage.html McAllister, B. (July 26, 2022). This Australian experiment is on the hunt for an elusive particle that could help unlock the mystery of dark matter. The Conversation. https://theconversation.com/this-australian-experiment-is-on-the-hunt-for-an-elusive-particle-that-could-help-unlock-the-mystery-of-dark-matter-187014 NASA/WMAP Science Team. (2013). WMAP produces new results . Retrieved September 13, 2023 from https://map.gsfc.nasa.gov/news/ Xenon Dark Matter Project. (2022). Dark Matter . Retrieved August 25, 2023 from https://xenonexperiment.org/partners/ Wicked back to
- ABOUT US | OmniSci Magazine
About Us OmniSci Magazine is a science magazine at the University of Melbourne, run entirely by students, for students. Our team consists of talented feature writers, columnists, editors, graphics designers, social media and web development officers, all passionate about communicating science! Past Contributor Interviews Editors-in-Chief Ingrid Sefton President Aisyah M. Sulhanuddin President Current Committee Lauren Zhang Secretary Andrew Shin General Committee Ethan Bisogni Treasurer Luci Ackland General Committee Kara Miwa-Dale Events and Socials Hendrick Lin General Committee Elijah McEvoy Events and Socials Past Editors-in-Chief Rachel Ko 2022-2024 Sophia Lin 2021-2022 Patrick Grave 2021-2023 Maya Salinger 2021-2022 Caitlin Kane 2022-2023 Felicity Hu 2021-2022 Yvette Marris 2022-2023
- Out of our element | OmniSci Magazine
< Back to Issue 6 Out of our element by Serenie Tsai 28 May 2024 Edited by Luci Ackland Illustrated by Louise Cen A land teeming with lush forestry and fresh air seems like a far reach from the current state of the world. Not too long ago, this was Earth’s reality. However, with the onset of industrialisation, and the subsequent exploitation of our natural resources, our environment rapidly deteriorated. We polluted our atmosphere and contaminated our waterways with oil and debris. Not only did we pose a threat to human health, we also risked the safety of our future. Experimenting with elements Not long after the Industrial Revolution, the use of nuclear energy arose as an alternative to fossil fuel to combat climate change. Society’s view on nuclear energy became contentious when the largest nuclear disaster to date occurred in Chernobyl in 1986. The explosion of the nuclear reaction caused hundreds to be afflicted by Acute radiation syndrome and many died within a few weeks from this disease (World Nuclear Association, 2022). Following the accident, a 30-kilometre exclusion zone around the power plant was enforced to prevent further contamination to humans. Yet unexpectedly, forest coverage has since increased 1.5 times over (Matsala et al., 2021). In the absence of humans, wildlife appears to be flourishing—in particular, grey wolves are thriving and have become the top predator in the exclusion zone (Itoh, 2018). There remains a lack of research surrounding the long-term implications of radiation on the health of wildlife (Itoh, 2018), good and bad. The negative effects of radiation are evident in the increase of cases of tumour growth and deformed beaks and claws in local birds (Itoh, 2018). The local flora were also negatively impacted with tree rings during the period of the incident indicating that radiation caused a reduction in tree growth (Mousseau et al., 2013). Natural disasters becoming more disastrous Similarly, the impacts of industrialisation have become especially discernible with the increasing severity of natural disasters; effects of which have been further compounded by climate change. Human activities such as the consumption of fossil fuels has played an overwhelming role in the increase of global temperatures, leading to more extreme weather conditions (Wuebbles & Jain, 2001, Nema et al., 2012). These higher temperatures have consequently amplified the intensity of droughts and fire seasons (Liu et al., 2010). Air pollution levels into some areas cause citizens to be perpetually smothered by smoke. Nature’s takeover As the foundation of Earth, nature has the capacity to reclaim areas that humans once inhabited. In Houtouwan, China, a once-thriving fishing village has now been overrun by vegetation. Almost every inch of the village has been camouflaged by vegetation—only mere silhouettes of the buildings remain amongst the greenery. It makes sense that an open area combined with abundant rain and shine would give way to overgrown vegetation; yet a Banyan tree elsewhere in China managed to slowly take root through even just the cracks of a brick floor. In Bangkok, a half-demolished shopping mall is now an oasis for aquatic life. This did not happen of its own accord; the mall was abandoned when it failed local regulations and was then flooded during monsoon season. Locals then introduced fish to prevent insects from breeding in stagnant waters and it has been flourishing ever since. Life is nothing without nature, yet there is a fine line between using nature’s resources for greater good or using it to our demise. There is a dire need to regulate the use of our finite resources. Nature thrives in abandoned places and has the potential to overcome human-inflicted disasters and outlive humanity. References Itoh, M. (2018). Wildlife in the Exclusion Zone in Chernobyl . 177–187. https://doi.org/10.1007/978-3-319-70757-0_11 Liu, Y., Stanturf, J., & Goodrick, S. (2010). Trends in global wildfire potential in a changing climate. Forest Ecology and Management , 259 (4), 685–697. https://doi.org/10.1016/j.foreco.2009.09.002 Matsala, M., Bilous, A., Myroniuk, V., Holiaka, D., Schepaschenko, D., See, L., & Kraxner, F. (2021). The Return of Nature to the Chernobyl Exclusion Zone: Increases in Forest Cover of 1.5 Times since the 1986 Disaster. Forests , 12 (8), 1024. https://doi.org/10.3390/f12081024 Mousseau, T. A., Welch, S. M., Chizhevsky, I., Bondarenko, O., Milinevsky, G., Tedeschi, D. J., Bonisoli-Alquati, A., & Møller, A. P. (2013). Tree rings reveal extent of exposure to ionizing radiation in Scots pine Pinus sylvestris. Trees , 27 (5), 1443–1453. https://doi.org/10.1007/s00468-013-0891-z Nema, P., Nema, S., & Roy, P. (2012). An overview of global climate changing in current scenario and mitigation action. Renewable and Sustainable Energy Reviews , 16 (4), 2329–2336. https://doi.org/10.1016/j.rser.2012.01.044 World Nuclear Association. (2022). Chernobyl Accident 1986 . World Nuclear Association. https://world-nuclear.org/information-library/safety-and-security/safety-of-plants/chernobyl-accident.aspx Wuebbles, D. J., & Jain, A. K. (2001). Concerns about Climate Change and the Role of Fossil Fuel Use. Fuel Processing Technology , 71 (1-3), 99–119. ScienceDirect. https://doi.org/10.1016/s0378-3820(01)00139-4 Previous article Next article Elemental back to
- ISSUE 8 | OmniSci Magazine
Issue 8: Enigma 3 June 2025 This issue unspools the long-hidden threads in science. Come make sense of the puzzles and mysteries with us! Or perhaps, leave just as addled. Editorial Cracking the Code: A Word from the Editors-in-Chief by Ingrid Sefton & Aisyah Mohammad Sulhanuddin A word from our Editors-in-Chief. Facial recognition Friend or Foe?: The Mechanisms Behind Facial Recognition by Mishen De Silva What's in a face? Mishen walks us through the ingenious ways our brains make meaning of the faces we see everyday. Human evolution The Lost Link: A Mystery in Evolution by Eymi Gladys Carcamo Rodriguez The theory of human evolution conjures textbook timelines of ape to man, but as Eymi explores, biology has never been that simple. Celebrity culture Glowing Limelight, Fashioned Stars by Aisyah Mohammad Sulhanuddin Chronically online or not, society sure loves its stars. Aisyah investigates the messy sociology behind our relationships with celebrities in past decades. Astronomy Why Are We So Fascinated by Space? An Exploration of Human’s Fascination with Outer Space by Emily Cahill What make the night sky impossible to ignore? Emily uncovers how culture, commercialisation and science have fuelled our cosmic curiosity. Prehistoric predators Terror Birds: The Discovery of Prolific Hunters by Jason Chien Giant, flightless and carnivorous - Jason pieces together the rise of terror birds as fearsome apex predators Psychology A Psychological ‘Autopsy’ of Ludwig van Beethoven: Dissecting Genius and Madness by Kara Miwa-Dale Elusive and erudite, even beyond the grave. Dissect the inner world of Beethoven with Kara - when can we call genius, madness? Fungi Fungal Pac Man by Ksheerja Srivastava No matter how good of a gamer you are, Ksheerja proves why biosensensing fungi should be crowned as our worlds best Pac-Man player. Dreams In Your Dreams: Unpacking the Stories of Your Slumber by Ciara Dahl Where do our minds go every night? Ciara explores the mysterious science best theories behind dreaming Neurology Functional Neurological Disorder by Esme MacGillivray What if your nervous system just stopped working? Esme explains FND, and how it affects someone, beyond symptoms. Slime moulds Thinking Outside the Body: The Consciousness of Slime Moulds by Jessica Walton I think, therefore I am... a slime mould? Jess ponders whether this humble, single cell protist may exhibit conciousness without a brain. Psychadelics Life Story of a Drug by Elijah McEvoy From 'Bicycle Day' to brain receptors, Elijah takes us on a trip through the enigmatic origins, uses and psychadelic effects of LSD. Gut microbiome Microbic Mirror of The Self by Sarah Ibrahimi Microbes: Humanities greatest enemy or our best friend? Sarah explores the relationship between the gut microbiome and our health. Infantile amnesia Mental Time Travel: How Far Can I Remember? by Sophie Potvin Step inside the hippocampus, as Sophie illustrates the mechanisms of memory formation and our power to make the past come alive again. Consciousness A Headspace of One’s Own by Andrew Irvin At what point does a computer become conscious? Andrew delves into technology that blurs the line between artificial intelligence and the human brain. Prejudice in Science What Do Women Want? by Madeleine Kelly The question we should be asking is not what we know, but what we don't know about women.
- ISSUE2
Issue 2: Disorder 10 December 2021 A few words on (Dis)Order! Sophia, Maya, Patrick and Felicity A few words on (Dis)Order! Columns Maxing the Vax: why some countries are losing the COVID vaccination race Grace Law This piece discusses key challenges faced by some countries in increasing their rates of getting the jab. Tactile communication: how touch conveys the things we can’t say Lily McCann Our daily dose of touch has decreased through months of lockdowns. But why is touch so important to us, and why do we feel the lack of it so severely? Hiccups Rachel Ko Evolution might be a theory, but if it’s evidence you’re after, there’s no need to look further than your own body. From the column that brought you a deep-dive into ear wiggling in Issue 1, here’s an exploration of why we hiccup! Postdoc Possibilities Renee Papaluca Thinking about postgraduate research? This column has some advice for you, courtesy of a recent PhD graduate. Building the Lightsaber Manthila Ranatunga Some of the most iconic movie gadgets are the oldest ones. For this issue we look at how the lightsaber was brought to life. Features Making sense of the senses: The 2021 Nobel Prize in Physiology or Medicine Dominika Pasztetnik What do spicy food, menthol lozenges and walking around blindfolded have in common? They all activate protein receptors, newly discovered by 2021 Nobel Prize winners. Law and Order: Medically Supervised Injecting Centres Caitlin Kane Keeping people safe from the harms of drug use is an important public health goal, but some question the value of medically supervised injecting centres in improving health and community outcomes. Spirituality and Science Hamish Payne Common thinking is that science is a rigid, cold and largely academic field which sneers at the domain of spirituality. I posit that one must move beyond this point of view in order to do good science, and to find the true aims and values of the discipline. Hidden Worlds: a peek into the nanoscale using helium ion microscopy Erin Grant How do scientists zoom further in than the typical optical microscope? Through the helium ion microscope – revealing beauty that at scales too small to imagine! Man-Made Science: On the Origins of the Gender Gap Mia Horsfall Scientific practice remains doused in centuries of unreasoned discrimination against women. But what is the best way to unravel the complexities of such an intricate web of injustice, intellectual theft and suffering? What’s the forecast for smallholder farmers of Arabica coffee? Hannah Savage Changing weather patterns are threatening the livelihoods of smallholder Arabica coffee bean farmers in rural East Timor and Ethiopia. How will dramatically reduced global coffee yields touch Melbourne’s privileged cafe culture? Discovery, Blue Skies... and Partisan Bickering? Andrew Lim Journeying from Cambridge, Massachusetts to Melbourne, Australia, this feature ponders over deadlocked bills, economic mandates and the era of the scientist-politician, considering science in the age of politics. The Evolution of Science Communication Monica Blasioli With social media users in now having far more power over content posted online than before, how does this impact the information which others receive about the COVID-19 pandemic? How to use a time machine Sabine Elias Whilst time travel is thought to be nothing more than science fiction, the very laws of physics point to its possibility. From rockets to wormholes, physicists have long sought the answer to such a phenomenon. Mastering Chaos with Pen and Paper Xen Papailiadis Drawing upon physics and meteorology, the mathematical laws which govern our chaotic and complex universe have found special use in describing the rapidly changing global climate.
- Issue3
issue 3 : alien 10 September 2022 This issue is about exploring all things exotic, unfamiliar, unknown. Dive into the column and feature articles by our talented writers below! columns The Body, Et Cetera “Blink and you’ll miss it”: A Third Eyelid? By Rachel Ko This article unpacks the fascinating evidence for evolution reflected within our very own eyes, connecting us to our reptilian ancestors. Chatter Belly bugs: the aliens that live in our gut By Lily McCann In this issue we explore how microbes influence our health and emotions, and what this means for our concept of identity. Humans of UniMelb In conversation with Paul Beuchat By Renee Papaluca I caught up with Paul Beuchat to learn more about his research journey and his potentially ‘alien’ methods of teaching. Our Past, Present & Future Waving Hello to the Aliens By Reah Shetty Our interaction with the idea of aliens has evolved. The question is how far have we come and how far will we go? Science Books Believing in aliens... A science? By Juulke Castelijn I wasn’t expecting to be persuaded of the existence of life beyond the confines of Earth. Ethics in Science The Ethics of Space Travel By Monica Blasioli Being the beginning of research into the impacts of space travel, can turning space travel into monopoly truly be justified? Wonders of the Landscape Space exploration in Antartica By Ashleigh Hallinan What makes Antarctica special when it comes to meteorite discovery? Science in the Age of Politics Hope, Humanity and the Starry Night Sky By Andrew Lim This second feature in the ‘Science in the Age of Politics’ series considers the importance of the stars, and scientific diplomacy, amidst rising global tensions. features Death of the Scientific Hero By Clarisse Sawyer How do we teach scientific history without promoting historical bigots? Mighty Microscopic Warriors! By Gaurika Loomba Equipped with a plethora of signalling chemicals and cells with different features, our heroic immune system fights wars daily without us realising it. Love and Aliens By Gavin Choong The First Nations’ perspectives are profound, and must be recognised by the Australian legal system. Existing in an Alien World: Navigating Neurodiversity in a System Built for Someone Else By Hazel Theophania Autism isn’t some inscrutable mystery - we’re people, and learning how we operate will help dismantle the barriers built up around us. AI and a notion of 'artificial humanity' By Mia Horsfall We still consider AI as other (or 'alien') to us, but ideal utility would be gained from toeing the precarious line between humanity and machine.
- ISSUE 6 | OmniSci Magazine
Issue 6: Elemental 28 May 2024 This issue explores the building blocks that comprise the world we live in. Our talented writers braved the elements - have a read below! Editorial by Ingrid Sefton & Rachel Ko A word from our Editors-in-Chief. Fire and Brimstone by Jesse Allen The world has long been subject to the fury of fire and volcanic eruptions. Technology to predict seismic activity may allow us to tame this elemental force. Hidden in Plain Sight: The dangerous chemicals in our everyday products by Kara Miwa-Dale Drink bottles, tinned food, receipts: a recipe for disaster? Interviewing A/Prof Mark Green, Kara exposes the hidden dangers of endocrine disrupting chemicals. A Frozen Odyssey: Shackleton’s Trans-Antarctic Expedition by Ethan Bisogni A pursuit of knowledge and a testament to survival, Ethan navigates the enthralling legacy of Sir Ernest Shackleton's Trans-Antarctic Expedition. Everything, Everywhere, All at Once: The Art of Decomposition by Arwen Nguyen-Ngo Arwen breaks down the intricacies of decomposition, leading us to consider the fundamental power not only in creation, but destruction. Out of our element by Serenie Tsai Following the industrial revolution, humankind has exploited and degraded the Earth's natural resources. Serenie shows how nature resists, maintaining the capacity to restore what humans have destroyed. Cosmic Carbon Vs Artificial Intelligence by Gaurika Loomba Carbon constitutes life and death, shaping conscious human existence. What threat could AI hold to the power of this element? Proprioception: Our Invisible Sixth Sense by Ingrid Sefton Our mysterious, yet omnipresent sixth sense - proprioception is the reason we know where our body and limbs are, even in the dark. A Brief History of the Elements: Finding a Seat at the Periodic Table by Xenophon Papas There's hydrogen and helium, then lithium, beryllium - or is there? The periodic table we know today was not always so, as Xen recounts.
- ISSUE 5 | OmniSci Magazine
Issue 5: Wicked 24 October 2023 This issue spotlights the mischievous, malevolent and morally dubious. Dive into a fascinating selection of articles by our talented writers below! A Message from the Editors in Chief Rachel Ko & Ingrid Sefton A word from our Editors-in-Chief. Black Holes: Defying Reality and Challenging Perception Mahsa Nabizada Black holes: portals into the unknown? Mahsa guides us through the mind warping and perception defying nuances of black holes. Griefbots: A New Way to Grieve (or Not) Akanksha Agarwal Akanksha considers the efficacy and ethics of AI Griefbots, exploring the implications for grieving, and the boundaries between life, death and human connection. On the Folklore of Fossils Ethan Bisogni Ethan traverses the interface of palaeontology and mythology, considering the insights fossils provide into both natural phenomena and human nature. Serial Killers Selin Duran Ever find yourself falling down the rabbit hole of gory true crime stories? Selin explores why our society is so infatuated with the lives of cold-blooded killers. Three-Parent Babies? The Future of Mitochondrial Donation in Australia Kara Miwa-Dale Cutting edge IVF technology is challenging our perceptions of what it means to be a parent. Kara deconstructs the social issues and ethics of mitochondrial donation. When Dark Matters Ingrid Sefton Dark matter: it has a name, yet no identity. Ingrid untangles the enigmatic nature of dark matter, probing into just what we do and don’t know about this cosmological puzzle. Why Do We Gossip? Lily McCann Rumours, reputation and reciprocity: Lily debates the connotations we make with gossip and whether our assumptions of its malicious nature are justified. Wicked Invaders of the Wild Serenie Tsai In this article, Serenie examines the detrimental and dastardly effects of invasive species and their future implications.





