top of page

Search Results

111 results found for ""

  • Existing in an Alien World: Navigating Neurodiversity in a System Built for Someone Else

    By Hazel Theophania < Back to Issue 3 Existing in an Alien World: Navigating Neurodiversity in a System Built for Someone Else By Hazel Theophania 10 September 2022 Edited by Breana Galea and Ruby Dempsey Illustrated by Janna Dingle Next Content warnings: Ableism, mental illness. Have you ever read something that just makes everything click into place? For me, it was that autism is characterised by a difficulty in forming and understanding ‘second-order representations’1. Let me explain: A ‘first order representation’ is the face value, the direct interpretation of an object or event. A ‘second order representation’ is the underlying meaning, the non-literal association with an object or event. Autistic people struggle with the latter. Allistic (non-autistic) people don’t, and for them it’s intrinsic in a large part of communication – nonverbal cues and gestures, sarcasm, undertones, passive aggression, politeness and more complex events like communication of social hierarchy all take place beneath the veneer of explicit communication. They rely on the ability to interpret another’s actions based on extrapolating their perspective. Rather than being automatic for autistic people, doing so is a learned, active behaviour, and one that is taxing to maintain and use. Reading this explanation was epiphanous for me for two reasons: it concisely explained why I and other autistic people I knew had such trouble navigating and communicating in social interactions, and it clarified why conflict and miscommunication arose so frequently. It contextualised and validated the way I experience and understand the world. Autistic communication is direct, predominantly using first order representation. It doesn’t soften effect or hide meaning with subtext; conversely it has difficulty picking up on inference and implication from others. So many times I have answered questions or followed instructions ‘incorrectly’, because I’ve addressed the words and not the implied meaning underneath. Much of boundary setting and emotional communication in social relationships is implicit - are they ‘acting’ interested? Does it ‘feel’ like they are reciprocating? Can you ‘tell’ that they want to be friends? - inability and difficulty in reading those complex second order representations makes navigating those situations painful and confusing. These struggles and anxieties make it much harder for autistic individuals to make and maintain friendships (3). Sedgewick and Pellicano (3) found that both autistic girls and boys report weaker friendships with more conflict than their neurotypical peers. They experience more victimisation, autistic girls especially, from bullying and other relational aggression, and experience far more insecurity around their friendships. The authors identify “both autistic and neurotypical girls alluded to wanting to fit in, but in different ways.” The neurotypical girls in the study were more concerned with securing a place in the social hierarchy – appearing cool and fitting in with the popular crowd - whether through dating or other means. For the autistic girls it was about finding people who actually accepted them as themselves; fitting in was not about adhering to social expectations, but about finding friends where they didn’t have to. Bury and Hedley (5) found much the same issues in analysing the problems autistic people face in the workplace. While the work itself was no more trouble for autistic individuals than their neurotypical counterparts, navigating the social aspects of a workplace drastically increased the stress and drain on autistic employees. Issues can arise from relative trivialities like dealing with food or birthday wishes, up to serious conflicts that jeopardise their employment. The same communication and relational issues that lead to autistic individuals struggling socially can have more serious consequences when the miscommunication and conflict arise when interacting with an authority, such as a boss or supervisor. Problems stem from unclear instructions, not adhering to unwritten or unspoken rules (social and otherwise), interrupting and socialising at wrong times – everything that relies on being able to determine and pick up on implicit communication. In other words, being autistic has career consequences. Now, having anxiety or depression aren’t intrinsic to being autistic (6). They’re not part of the same dysfunction in development. However, something about being expected to negotiate a minefield of implicit communication that others grasp intuitively leads to an extreme coincidence of autism with both anxiety and depression. The social ostracism and punishment for violating rules you’ve never been taught casts a slight shadow over every interaction. The starkly increased incidences of bullying and victimisation autistic youth go through may also contribute to mental illness. Mayes, Murray and their team7 write: “It is quite possible that youth with ASD (youth with Autism Spectrum Disorder (ASD) ) face considerable challenges during the transition from childhood to adolescence. Social difficulties and awareness of being different from others, especially during the teen years, may lead to problems with anxiety, depression, or hostility.” They reported anxiety in autistic children ranging from 67% to 79% depending on the severity of their traits, and depression affecting between 42% and 54% likewise – in comparison to anxiety occurring in 8% of children and adolescents8 and depression in 5% of children, 17% of adolescents13, and 5% of adults12 overall. Similar figures are reported by Susan White and her colleagues in their meta-analysis “Anxiety in children and adolescents with autism spectrum disorders”. The social deficits autistic individuals endure lead to social anxiety by increasing the likelihood of negative interactions9 and then that anxiety makes interaction with others more difficult, perpetuating the cycle. It’s clear there’s an issue here. Despite no biological link, autistic people suffer far greater rates of depression and anxiety than their neurotypical counterparts. They find friendships more taxing, worrying, and less fulfilling due to impossible unrealistic expectations of allistic communication and understanding. They’re far more likely to be the target of bullying and victimisation than their neurotypical counterparts. Autistic adults suffer in their careers and employment due to a lack of accommodation and recognition. But it doesn’t have to be this way. Growing up neurodivergent shouldn’t be traumatic. Existing as an autistic person shouldn’t be fraught with conflict. I don’t know how we will get to that point. It feels like there are a hundred facets to the issue, each their own problem and needing their own solution. That being said, all solutions need to stem from an understanding of autism and autistic individuals. So, what does it mean to be autistic and how can we navigate those communicative differences? The social aspect of autism arises from a deficit in ‘Theory of Mind’, which is the capacity to interpret and conceptualise another’s thoughts, beliefs, emotions, and intentions (1, 2, 9, 10). Second order representations are the events in which Theory of Mind is used to interpret their meaning – and so a disorder in Theory of Mind development affects the ability of an individual to use and understand those second order representations. Essentially: autistic individuals struggle to interpret and conceptualise other people’s thoughts, beliefs, emotions and intentions. What does that mean for communication? As mentioned earlier, it leads to this a twofold miscommunication between autistic and allistic people, where autistic people don’t see meaning where it is, and allistic people see meaning where it isn’t. This is known as the ‘double empathy problem’ (2). But it isn’t just a communication deficit on the part of the autistic person – the disconnect is due to two entirely different communication styles. Allistic people use second order representations readily and frequently. They’re able to infer other’s perspectives with ease and conversation is based around these assumptions. Gestures, body language and inference are used to convey meaning and assess receptiveness. If the wrong assumptions are made, it can lead to ‘fragmenting’, where there is a cost to getting it wrong and the conversation is disrupted (2). It may not be relationship-damaging every time, but people do pick up on misread cues or intentions and often the only indication a mistake has been made is given through those same implicit communications. The creation of a shared understanding is known as ‘intersubjectivity’ (1, 2). Allistic intersubjectivity is managed through these second order representations, where the shared understanding is outlined and defined implicitly. Autistic people don’t have the same ability to interpret second order representations, so rather than probing or assessing what others have in common, they essentially have to guess. As a result, autistic people can seem appear egotistical or self-interested (2) when they spontaneously talk about an interest of theirs, or suddenly change the topic of conversation. In actuality, they’re trying to find common ground. Because finding that initial mutuality is harder, autistic individuals also place far less of a social cost on getting it wrong (2) and so while intersubjectivity may be harder to initially reach, there’s far less penalty for trying and failing. If these bids for connection are reciprocated, it can creates a “rich intersubjective space for shared understanding” (2). These two elements of autistic communication come together to form a coherent communication style. Heasman writes “The generous assumption of common ground and the low demand for coordination are more than two isolated features; they potentially fit together into a functional system that allows rich forms of social relating” (2). The autistic communication style only appears to be dysfunctional when “[placed] against the cultural backdrop of neurotypical norms and expectations” (2). Another way to look at that is that autistic people don’t need ‘extra’ accommodation or compensation compared to allistic people – allistic people just have all their needs already met. They’re already accommodated for, but it’s such a cultural norm that it’s not even perceived as being so. A metaphor for the two types of communication is that of an allistic person and an autistic person trying to set up fishing rods along a river. The allistic person knows where the fish are - perhaps from reading the movement of the water - and sets up all their poles in that spot. The autistic fisherperson has no such information and sets up their rods all up and down the river to try to find themwhere the fish are. Once they’ve got a few bites and know where the fish are, great! They can move all their rods and set up in whatever spot they’ve found. They just don’t have the same ability to determine where to set up in the first place. They’re not any worse at fishing (i.e., communicating) – they just have trouble knowing where to start. Autism is only a disability in an environment that doesn’t support it. As Bury noted, the only deficits in the workplace are from a lack of social accommodation – autistic individuals don’t struggle with the work itself. In fact, both Bury and Hurley-Hanson and her co-authors report that autistic individuals perform better in a multitude of areas: they have greater problem-solving, pattern-recognition and decision-making skills and a greater tolerance for repetition (5, 11). And that’s great! It’s wonderful to be recognised for the talents you have and the effort you put in. But it shouldn’t have to be justified that autistic people deserve employment and equitable treatment. It’s depressing to have your life and experience boiled down to your marketability and employability. But there is still a disconnect between autistic and allistic people. The perception of autistic people as defective rather than different prevents the integration and acceptance of autistic people into the social space and workforce. To work towards an autism-friendly society, education and awareness of the ways communication and understanding differ in neurodivergent individuals need to be ubiquitous. The hardships autistic people face aren’t because we’re autistic – they’re because everyone else isn’t. Instead of us continuing to assimilate to an allistic worldview, perhaps it’s time to meet us halfway and learn how we operate instead. References Frith, U. (1989) A new look at language and communication in autism. Heasman, B. (2018) Neurodivergent intersubjectivity: Distinctive features of how autistic people create shared understanding. Sedgewick, F., Pellicano, E., (2018) ‘It’s different for girls’: Gender differences in the friendships and conflict of autistic and neurotypical adolescents. Happé, F., Leslie, A. (1989) Autism and ostensive communication: The relevance of metarepresentation Bury, S. et al. (2020) Workplace Social Challenges Experienced by Employees on the Autism Spectrum: An International Exploratory Study Examining Employee and Supervisor Perspectives White, W. et al. (2009) “Anxiety in children and adolescents with autism spectrum disorders.” Mayes, S.D., Calhoun, S.L., Murray, M.J. et al. (2011) Variables Associated with Anxiety and Depression in Children with Autism. Bernstein, G. A., & Borchardt, C. M. (1991). Anxiety disorders in childhood and adolescence: A critical review. Journal of the American Academy of Child and Adolescent Psychiatry Bellini, S. (2004) Social Skill Deficits and Anxiety in High-Functioning Adolescents With Autism Spectrum Disorders. Focus on Autism and Other Developmental Disabilities. Brewer, N, Young, RL & Barnett, E 2017, ‘Measuring Theory of Mind in Adults with Autism Spectrum Disorder’ Hurley-Hanson, A. (2020) ‘Autism in the Workplace’, Palgrave Macmillan Institute of Health Metrics and Evaluation. Global Health Data Exchange (GHDx) Selph, S. (2019) Depression in Children and Adolescents: Evaluation and Treatment Previous article Next article alien back to

  • Why Our Concept of Colours is Broken | OmniSci Magazine

    < Back to Issue 4 Why Our Concept of Colours is Broken by Selin Duran 1 July 2023 Edited by Tanya Kovacevic and Megane Boucherat Illustrated by Aizere Malibek The world that surrounds us is made from a combination of three main colours: red, yellow and blue. Known as the primary colours, it's the first thing we learn in primary school art class. In illusions, however, our concept of colours becomes warped and fails us. The only question is how do we fix it? Take the infamous colour-changing dress of 2015. This dress became an internet sensation due to its ambiguity of colour with the major question being “Is the dress black and blue or white and gold?” The dress, despite causing many online debates, is actually black and blue. Nevertheless this debate raises an important question about colours. Why do we see different colours in the same image? Let's begin with colour theory. Colour theory is a set of guidelines that artists use when mixing colours within the spectrum. With the intention of provoking different psychological responses, colours are used to either complement or contrast one another [1]. We see this through the infamous dress - with black and blue complimenting each, then gold and white. Our highly subjective perception allows us to see visually appealing combinations of colours juxtaposed to contrasting combinations. However, what we also need to consider are the light sources being used. Ranging from natural light to blue light and other artificial lighting, the light that we are exposed to can alter our perspective of colour. On our devices, we see colours through a series of red, green, and blue pixels that combine to make new colours for every image that we see [2]. Similarly, the frequent manipulation of our devices’ brightness also contributes to different colours being shown on the screens. These are the primary reasons why the famous dress was perceived so differently by everyone: each device shows a different version of the same colour depending on its display settings, which affects how many red, green and blue pixels there are. In addition to the colour theory, another effect— the Bezold Effect—is at its peak with the infamous dress. The Bezold Effect is an optical illusion where a colour’s appearance is affected by the presence of colours that surround the object [3]. For this dress, it’s seen through the shadows that form on and around the bodice. With brighter surroundings, such as the sun or an overly brightened screen, the blue from the dress appears gold to the eye, while the black appears white. The dress reverts to its original colours when the screen is darkened or artificial light is used. Circling back to colour theory, the changes in colours aren’t randomly allocated: they are opposing colours of the colour wheel. The wheel is a visual illustration of colours arranged by their wavelength, used to display the relationship of primary colours to their corresponding secondary colours [4]. With blue contrasting a yellow or gold, the changes in lighting perfectly display the contrasting colours on the wheel. The fascinating nature of colours is not something we can fix. In the era of digital displays and evolving technologies, we can’t see things the “right” way because there is no notable “right” or “wrong” way to look at the world. The dress is just one of those illusions that changes depending on the context and surroundings that it’s placed in. You can manipulate these colours and force them to change by physically changing the brightness on a device. So out of curiosity, I decided to conduct a little experiment of my own through an Instagram poll to see what my friends thought of this dress. While only 37 people participated, it was still fun to see what would happen with the votes; however, I was surprised to see the results after 24 hours. I expected a majority to choose the “real” colour of the dress, since the dress has been around in the media for a while and the answer is also online, but people still had contrasting opinions about the dress. With only 54% of people seeing black and blue and 46% white and gold, I began questioning our vastly different perceptions. The answer always seemed obvious as the dress was always black and blue not white and gold but that didn’t mean that other people saw what I saw. My favourite response came from a friend who saw the dress as blue and gold and after that, my opinion changed. For me, the dress is now blue and with tints of gold and I can’t see it any other way. This truly goes to show that there’s more behind the dress than what meets the eye. When I first saw the image my brightness was at the lowest it could possibly be and now after looking at the image enough, it’s just blue and gold. The ambiguity of this image is what makes the dress the best example of a real-life illusion. Other colour combinations act the same way in different lighting, but what we see is completely dependent on our perceptions, and every now and then, it’s always fun to put up a debate. References Eliassen MM. Colour theory. Salem Press Encyclopedia [Internet]. 2023 Jan 1 [cited 2023 May 13]; Available from: https://discovery.ebsco.com/linkprocessor/plink?id=30f4180b-d38d-38e6-95df-fcf469ab5c8a Mertes, A. (2021, February 23). Why Computer Monitors Display the Same Colors Differently . https://www.qualitylogoproducts.com/ . https://www.qualitylogoproducts.com/promo-university/why-monitors-display-different-colors.htm#:~:text=The%20pixels%20are%20in%20some,shows%20up%20on%20the%20screen Lasikadmin. (2022, June 2). What is Bezold Effect? | Useful Bezold Effect. LASIK of Nevada. https://lasikofnv.com/blog/test-your-vision-by-bezold-effect/#:~:text=What%20is%20the%20Bezold%20Effect,one%20to%20the%20human%20eye Understanding color theory: the color wheel and finding complementary colors . (n.d.). https://www.invisionapp.com/inside-design/understanding-color-theory-the-color-wheel-and-finding-complementary-colors/ Previous article Next article back to MIRAGE

  • Believing in aliens... A science?

    By Juulke Castelijn < Back to Issue 3 Believing in aliens... A science? By Juulke Castelijn 10 September 2022 Edited by Tanya Kovacevic and Ashleigh Hallinan Illustrated by Quynh Anh Nguyen Next The question of the existence of ‘intelligent life forms’ on a planet other than ours has always been one of belief. And I did not believe. It was probably the image of a green blob with multiple arms and eyes squelching across the ground and emitting noises unidentifiable as any form of language which turned me off the whole idea. But a book I read one day completely changed my mind; it wasn’t about space at all, but about evolution. ‘Science in the Soul’ is a collection of works written by the inimitable Richard Dawkins, a man who has argued on behalf of evolutionary theory for decades. Within its pages, you will find essays, articles and speeches from throughout his career, all with the target of inspiring deep rational thought in the field of science. A single essay gives enough food for thought to last the mind many days, but the ease and magnificence of Dawkin’s prose encourages the devourment of many pages in a single sitting. The reader becomes engulfed in scientific argument, quickly and completely. Dawkins shows the fundamental importance of the proper understanding of evolution as not just critical to biology, but society at large. Take, for instance, ‘Speaking up for science: An open letter to Prince Charles,’ in which he argues against the modelling of agricultural practices on natural processes as a way of combating climate change. Even if agriculture could be in itself a natural practice (it can’t), nature, Dawkins argues, is a terrible model for longevity. Instead, nature is ‘a short-term Darwinian profiteer’. Here he refers to the mechanism of natural selection, where offspring have an increased likelihood of carrying the traits which favoured their parents’ survival. Natural selection is a reflective process. At a population level, it highlights those genetic traits that increased chances of survival in the past. There is no guarantee those traits will benefit the current generation at all, let alone future generations. Instead, Dawkins argues, science is the method by which new solutions to climate change are found. Whilst we cannot see the future, a rational application of a wealth of knowledge gives us a far more sensitive approach than crude nature. Well, perhaps not crude per se. If anyone is an advocate for the beauty and complexity of natural life, it is surely Dawkins. But a true representation of nature, he argues, rests on the appreciation of evolution as a blinded process, with no aim or ambition, and certainly no pre-planned design. With this stance, Dawkins directly opposes Creationism as an explanation of how the world emerged, a battle from which he does not shy away. Evolution is often painted as a theory in which things develop by chance, randomly. When you consider the complexity of a thing such as the eye, no wonder people prefer to believe in an intelligent designer, like a god, instead. But evolution is not dependent on chance at all, a fact Dawkins argues many times throughout his collection. There is nothing random about the body parts that make up modern humans, or any other living thing - they have been passed down from generation to generation because they enhanced our ancestors’ survival. The underlying logic is unrivalled, including by religion. But that doesn’t mean Dawkins is not a man of belief. Dawkins believes in the existence of intelligent extraterrestrial life, and for one reason above all: given the billions upon billions of planets in our universe, the chance of our own evolution would have to be exceedingly small if there was no other life out there. In other words, we believe there is life out there because we do not believe our own evolution to be so rare as to only occur once. Admittedly, it is not a new argument but it had not clicked for me before. Perhaps it was Dawkins’ poetic phrasing. At this stage it is a belief, underlined by a big ‘if’. How could we ever know if there are intelligent life forms on a planet other than Earth? Dawkins provides an answer here too. You probably won’t be surprised that the answer is science, specifically a knowledge of evolution. We do not have to discover life itself, only a sign of something that marks intelligence - a machine or language, say. Evolution remains our only plausible theory of how such a thing could be created, because it can explain the formation of an intelligent being capable of designing such things. We become the supporting evidence of life somewhere else in the universe. That’s satisfying enough for me. Previous article Next article alien back to

  • Everything, Everywhere, All at Once: The Art of Decomposition | OmniSci Magazine

    < Back to Issue 6 Everything, Everywhere, All at Once: The Art of Decomposition by Arwen Nguyen-Ngo 28 May 2024 Edited by Subham Priya Illustrated by Jessica Walton From a single point in time, to a burst of colour and light, our universe came along into existence (The National Academy of Sciences, 2022). Within the multitude of galaxies and stars sprinkled across the universe, our little planet sits inside the solar system within the Milky Way. Like the way the universe came from a singularity, we were created from a singular cell. Over time, this cell divided and divided until we became these complex beings filled with different flavours of cells and the elements that comprise them. We are ever growing, just as the universe is ever expanding (Harvey, A., & Choi, C. Q., 2022). Though the fate of our universe is still a mystery, our fate is a little less mystical and thought-provoking – but that doesn’t make it any less interesting. Our less mystical yet fascinating fate begins with decomposition. Decomposition is the process in which dead tissue is broken down and converted into simpler forms. Large scavengers, such as vultures, foxes and crows, eat chunks of the corpse using it as a source of energy (Trees for Life, 2024). When these scavengers excrete waste — which is certainly not a pretty sight — their dung attracts smaller organisms like dung beetles. Little creepy crawlies — beetles, maggots and earthworms — all come along to the corpse, munching on its bits and pieces. They even lay their eggs in the openings of the corpse like the eyes, nose and mouth, an even LESSER pretty sight! If we zoom in further, we see microscopic bugs grow upon this dead body and take up nutrients. These bacteria then proceed with anaerobic decomposition, which occurs in the absence of oxygen. This produces gases like methane and carbon dioxide, causing the corpse to swell – the reason why dead bodies smell so bad (Trees for Life, 2024). After all that decaying, eventually, all that will remain of the carcass would be the cartilage, skin and bone, which a range of flies, beetles and parasites take advantage of (Trees for Life, 2024). Small critters such as mice and voles may come along, gnawing on the bone for calcium. How else are such little creatures supposed to get strong bones? Decomposition of dead flora is slightly different than the process for animals. For plant decomposition, fungi are the key players. When the tree leaves die and fall to the ground, they form a thick layer on the soil surface along with other dead plants, termed the litter layer (Trees for Life, 2024). Fungi have a body structure of white thread-like filaments called the hyphae, which resemble the white strings of floss. These white fungal floss take over the litter layer and consume nutrients whilst breaking down the litter layer. Unlike the decomposition of an animal, the decomposition process for plants is odourless. Phew! Over time, little wriggly earthworms begin to take control of breakdown. We use earthworms in our compost bins because they are great decomposers for dead plants and make organic fertiliser for our gardens. Whether an animal or a plant, decomposition takes each and every atom, from the carbon to the sodium atoms and recycles them to be used to create something new. It may be daunting from a human perspective to think that after all we’ve lived for, we would only be broken down and that the littlest bits of us, recycled. As our body takes its final breath, the brain fires the last of its neurons flooding our mind with bursts of colour, the way different elements cause the explosion of colours in fireworks lighting up the night sky. As the body decomposes, slowly each molecule of our body returns to the Earth, allowing for new life to take place. A sapling to sprout out from the depths of the soil. We are carried through the life of a new being; perhaps a tree, the grass or the flowers. Once again each molecule and atom in that being will return to the Earth like clockwork. And perhaps, return to the universe, a part of little sparkles that litter the night sky. References Harvey, A., & Choi, C. Q. (2022). Our expanding universe: Age, history & other facts . https://www.space.com/52-the-expanding-universe-from-the-big-bang-to-today.html Trees for Life. (2024). Decomposition and decay . https://treesforlife.org.uk/into-the-forest/habitats-and-ecology/ecology/decomposition-and-decay/#:~:text=Decomposition%20is%20the%20first%20 The National Academy of Sciences. (2022). How did the universe begin? How will it end? https://thesciencebehindit.org/how-did-the-universe-begin-how-will-it-end/#:~:text=The%20Big%20Bang%20theory%20says,in%20an%20already%20existing%20spac e Previous article Next article Elemental back to

  • Serial Killers | OmniSci Magazine

    < Back to Issue 5 Serial Killers Selin Duran 24 October 2023 Edited by Yasmin Potts Illustrated by Aditya Dey Serial killers. Do we love them or hate them? It’s hard to know, especially as the media surrounding them is increasing. From fiction to nonfiction killers, our society is obsessed with giving a voice and perspective to these people. We have movies, documentaries, TV series and even Youtube videos accounting the lives and stories of killers. Despite this, people rarely stop to ask themselves why they enjoy this style of media - some of the most wicked and gruesome acts, glorified for the interest of many. Yet, every day we are met with new shows highlighting the life of coldblooded killers. But why are we interested in them? It’s mostly a morbid curiosity; as humans, we are drawn to crime. We want to know why people choose to kill and how they do it. Jack Haskins, a University of Tennessee journalism professor, noted that "humans [are] drawn to public spectacles involving bloody death...Morbid curiosity, if not inborn, is at least learned at a very early age " (UPI Archives, 1984). As a collective, we have always wanted to explore the horrid acts of those who kill. But it’s only with the help of modern media that people enjoy them. Media loves a good story - and what makes a good story? A crazy serial killer on the loose. One of the earliest movies about a serial killer is Fritz Lang's 1931 film M . Set in Berlin, the film details a killer who targets children. Since then, a downward spiral of fictional serial killer movies has taken society by storm. Being all the craze during the mid-80s and 90s, the highest amount of serial killer media were produced in this timeframe. One of the most popular works is director Alfred Hitchcock's iconic Psycho, which won eight Academy Awards (IMDb, 2021). What is truly disturbing is the story of this film. Norman Bates, our killer, is deemed mentally insane and suffers from Dissociative Identity Disorder. Through his personality changes, he proceeds to kill two people during the film, in addition to multiple murders not depicted. Yet, when he is jailed, we learn that his actions were the result of abuse he endured when he was younger. Suddenly, we're forced to feel sympathetic towards his situation. How can that be a reasonable justification towards murder, and why do we applaud the film for this? As a society, accepting murder based on mental insanity seems more than unreasonable - but no one has questioned it thus far. This unfortunately happens not only with fictional killers, but with nonfiction ones. Our interest in killers turns into a way to inform ourselves of these situations (Harrison, 2023). We look to these documentaries and podcasts that tell the stories of the most notorious serial killers to learn something and prevent the situation from happening to us. All whilst indulging in content that emphasises these killers as being regular people, not evil individuals, who committed crimes for personal pleasure. We don’t need to see a biopic about the ventures of Ted Bundy and Jeffery Dahmer. Yet the second you search their names on Google, an all-star cast portraying the life of a man who tortured their victims fills your screen. This is certainly not an ethical thing to endorse. Despite this, not a single person thinks twice about it due to how common it is. Directors are profiting off victims and as a society, we are allowing it because of our curiosity. What happened to compassion? Because I certainly believe we have lost it. We have become so infatuated with killers that their actions seem unimportant to us. We yearn to discover more about their lives and forget that real people were implicated in these events. These killer stories provide bursts of short-lived adrenaline and then we return to our normal lives. In forgetting the consequences of these real stories, we are in many ways as bad as the killers themselves. And that is truly wicked. References Harrison, M. A. (2023). Why Are We Interested in Serial Killers? Just as Deadly: The Psychology of Female Serial Killers . Cambridge: Cambridge University Press, 17–31. https://www.cambridge.org/core/books/just-as-deadly/why-are-we-interested-in-serial-killers/B35C2243B387273749EA164318C27623?utm_campaign=shareaholic&utm_medium=copy_link&utm_source=bookmark IMDb. (2021). Psycho (1960) - Awards . https://www.imdb.com/title/tt0054215/awards/ UPI Archives. (1984). Few answers on origin of morbid curiosity. UPI. https://www.upi.com/Archives/1984/04/07/Few-answers-on-origin-of-morbid-curiosity/7976450162000/#:~:text=%27Throughout%20human%20history%2C%20humans%20have Wicked back to

  • Echidnas: Gentle Courters In The Competitive Animal Kingdom | OmniSci Magazine

    < Back to Issue 4 Echidnas: Gentle Courters In The Competitive Animal Kingdom by Emily Siwing Xia 1 July 2023 Edited by Maddison Moore and Arwen Nguyen-Ngo Illustrated by Christy Yung When we think of animals or nature in competition, we picture aggression and savagery over resources such as food, territory and mates. Beyond aggression, however, the variety of animal behaviour associated with competition for resources is immense. A gentle form of competition is the bizarre mating ritual of our own unique Australian fauna: the echidna. Known as Tachyglossus Aculeatus and spiny anteaters, echidnas are quill-covered animals living in Australia and New Guinea. Since Australia is so isolated from other continents, our fauna has often been regarded by outsiders with an air of mystery and awe. To start with, echidnas are in the same family as the famed platypus, called monotremes (egg-laying mammals). Surviving monotreme species can only be found in Australia and New Guinea. The four species of echidnas, along with their duck-billed cousin, are the very few surviving members in this classification. Despite the similarities in their name and appearance in both being covered with hollow, spiny quills, these spiny anteaters are not actually closely related to the more well-known anteaters in the Americas on a genetic and evolutionary basis. Echidnas feed on a diet of ants and termites, using their electroreceptive beaks to find burrowing prey digging them out with their hind claws. These powerful claws are long and curved backwards, specially designed for digging. Funnily, when the British Museum received an echidna specimen, they switched the backward claws frontwards thinking that it was a mistake. As mentioned before, mating rituals can be a violent (even bloody) ordeal in nature. From barbed penises in cats and deadly fights for females in elephant seals, straight to sexual cannibalism in praying mantises, there seems to be endless examples of brutality in the animal world. However, behind these brutal images is another side of nature that seems gentle and even humorous at times: for example, the ritual of our spiny suitors. Echidna mating rituals begin with the formation of a mating train. From June to September in Australia, male echidnas mate by lining up — from their beak tips to their spiny bottoms — to follow behind one single female. These trains can have more than 10 males in line and last for days, even weeks, at a time. During the mating season, male echidnas may leave a train to join or form a different train behind another eligible female. Their mating efforts often lead males to travel for long distances, even beyond their own home ranges. If the males get interrupted and lose track of the female, they reform their train by picking up her scent with their snouts in the air. They are such determined suitors that it is extremely difficult for a female echidna to evade them. Usually, there is one male that remains through the long-winded process, and they get to mate with the female. The reason behind forming echidna trains is unknown, but scientists generally agree that it is correlated with some type of selection process. One theory is that it aids the female in weeding out all the weaker males by tiring them out until the last one remains. Another is that the female is waiting for the right male that she is interested in to get behind her. Either way, it is a process of determination and perseverance. In exceedingly rare occasions where there are still multiple suitors left at the end, the males dig a trench surrounding the female and compete through head bumping. Although there is still much not understood about head bumping due to its scarce occurrence, it is generally considered an echidna social behaviour that serves to maintain dominance. Head bumps are generally only given by dominant echidnas to subordinate echidnas who haven’t recognised their dominance status and moved away. This rarely happens and is a relatively peaceful affair compared to conflicts in other animals. The winner of the mating head bumping ritual then digs until the previously mentioned trench is deep enough for him to be below the female so they can mate through their cloacas. 23 days after copulation, the female lays a soft-shelled leathery egg into a temporary pouch where it continues to incubate for 10 more days when a tiny puggle (a baby echidna or platypus) hatches. The puggle drinks milk from the female’s special mammary hairs until it is capable of feeding itself and has fully covered spines and fur. At last, the matured echidna leaves their mother’s burrow to live independently. The mating rules and practices amongst echidnas are a demonstration of patience and courtesy. This contrasts with the general public misconception of nature being merciless, which is characterised by the brutal competition for food, social status and mating opportunities. Although they are in the same competition for a mate, the lines of waddling echidnas are polite, organised and humorous. Behind the mask of brutality, nature continues to have its pleasant secrets. References Morrow G, Nicol SC. Cool Sex? Hibernation and Reproduction Overlap in the Echidna. PLoS One. 2009 Jun 29;4(6):e6070. Echidna [Internet]. AZ Animals. [cited 2023 Jun 22]. Available from: https://a-z-animals.com/animals/echidna/ Anne Marie Musser. Echidna | Britannica [Internet]. 2023 [cited 2023 Jun 22]. Available from: https://www.britannica.com/animal/echidna-monotreme Echidna trains: explained [Internet]. Australian Geographic. August 6, 2021 [cited 2023 Jun 22]. Available from: https://www.australiangeographic.com.au/topics/wildlife/2021/08/echidna-trains-explained/ Lindenfors P, Tullberg BS. Evolutionary aspects of aggression the importance of sexual selection. Adv Genet. 2011;75:7–22. Warm Your Heart With Videos of ‘Echidna Love Trains’ [Internet]. Atlas Obscura. September 1, 2017. [cited 2023 Jun 22]. Available from: http://www.atlasobscura.com/articles/echidna-love-trains Previous article Next article back to MIRAGE

  • Discovery, Blue Skies... and Partisan Bickering? | OmniSci Magazine

    < Back to Issue 2 Discovery, Blue Skies... and Partisan Bickering? Is the era of bipartisan science dead? Do we discover for discovery’s sake? And what happens when optimistic scientific vision meets cold political reality? Journeying from Cambridge, Massachusetts to Melbourne, Australia and tackling everything from deadlocked appropriations bills and economic mandates to the scientist-politician and the prospect of discovery, this feature tries to shine a light on all those questions, as it ponders what it really means to do science in the age of politics. by Andrew Lim 10 December 2021 Edited by Ethan Newnham & Sam Williams Illustrated by Friday Kennedy The chalk dust hangs in the air. Blackboards scrawled with inheritance trees, genetic disease rates and historical minutiae about a long-deceased Oxford don … they all stand still for a moment. As he walks out, the freshman class surrounds the professor (a man once unironically described as “the rock star of biology”), pestering him with incessant questions. Ambling into the sunny fall day, they are joined by more and more – he cracks a joke about being a “photos kind of guy” and lets them take the obligatory selfie. Image 1: Dr Eric Lander teaching freshman biology at MIT in 2012. Looking at the scene, it’s hard to believe that we find here a future member of the Cabinet of the United States. Surely such individuals come from the corridors of Congress or the halls of big business, not this leafy, academic and somewhat-secluded corner of Cambridge, Massachusetts, between an apple tree descended from Isaac Newton’s in the garden and a prototype solar car down the hall. And almost certainly this man, who once steeled himself for a “rather monastic” pure mathematics career and whose main claim to fame was in mapping out the human genome, cannot be the one who someday will be asked to bridge science and politics in what appears an ever more divided union. But he is. In 2021, this very professor, Dr Eric Lander, will be sworn in as Director of the Office of Science and Technology Policy (OSTP), charged by President Joe Biden with maintaining “the long-term health of science and technology” and “guarantee[ing] that [their] fruits … are fully shared”. The mandate belies a time where science increasingly seems to live in the world of partisan political bickering. And so, in an exciting new series of features beginning with this very article, we at OmniSci Magazine are sitting down with those shaping the colliding worlds of science and public service across Australia and around the globe to ask: In a time when Dr Lander’s appointment is heralded by the White House slogan “Science is Back” and Australia sees thirteen Science Ministers in ten years, can science still straddle the political divide, or is the era of bipartisan science dead? What does it mean to discuss national science in an era of international research? And how should scientists and policymakers alike navigate this brave new political world? If not very scientific, it perhaps befits the political side of this feature to begin with the apocryphal. It has been said that The Right Honourable William Ewart Gladstone, the famed four-term 19th-century Liberal Prime Minister of the United Kingdom, was once attending a demonstration by the physicist Michael Faraday, who had just made his first forays into electricity. After the show, Gladstone went to the back of the room to have a word with the inventor: “It’s all very curious, Mr Faraday,” he murmured, “but does it have any practical use?”. The scientist did not miss a beat: “Well, sir,” he responded, “I suspect one day you shall tax it!” Image 2: President John F Kennedy speaking at Rice University in Houston, Texas in September 1962 It’s an old joke that, to many, sums up the cold-hearted and transactional relationship between science and politics. But those of a more optimistic bent would disagree. They would point to the golden age of space exploration, when, over half a century ago, on a sunny September Houston morning, President John F Kennedy famously declared that the United States would “go to the Moon in this decade”. That day, he offered a vision for his country to “set sail on this new sea because there is new knowledge to be gained”, promising an open mandate to learn more about the universe around us, with no reason beyond the sheer wonder of exploration. It was a promise to a nation – one that appeared to transcend party politics. Indeed, it was ironically under the presidency of Richard M Nixon, the man whose campaign had accused Kennedy in 1960 of mass electoral fraud, that Apollo 11 landed on the moon, with Nixon transformed into the man who promised to “not drift, nor lie at anchor…with man's epic voyage into space”. But if overflowing bipartisan support for research as a sheer quest for knowledge was once the case, it certainly seems at odds with political reality today. Both sides of the political aisle seem deeply concerned with the economics of science rather than the prospect of discovery. In Australia, upon the appointment of The Honourable Richard Marles MP as Shadow Minister for Science, Opposition Leader the Honourable Anthony Albanese MP described him as “shadow minister for jobs, jobs and more jobs”. The Shadow Minister himself then highlighted science and technology as key to “micro-economic reform” for Australia. Mere months later, upon The Honourable Melissa Price MP’s appointment as Minister for Science, Prime Minister the Honourable Scott Morrison MP spoke of her portfolio encompassing science and technology “right across the economy, both in civil and defence uses”. To many, this speaks to a wider concern – the neglect of esoteric “blue skies” research (pursuing discovery for discovery’s sake) in favour of scientific research with immediate short-term economic impact. you never quite know what a scientific discovery will lead to or when it’ll be useful (or indeed, vital!) for society. I don’t think our State or Federal Governments are doing enough to fund this kind of science and research, in everything from medical research to physics to studying our threatened species. It needs to be valued a lot more.” Representatives from the Victorian branches of the Australian Labor Party and the Liberal Party of Australia did not respond to our request for comment. It's a trend that Ellen Sandell MP, Deputy Leader of the Victorian Greens, has watched with growing concern. In an exclusive email interview with OmniSci Magazine, she expressed her dismay at the state of “blue skies” science: “Basic research - or the study of science to better understand our world, even if we don’t know where it will lead - is incredibly important. I think the pandemic has shown us just how valuable our scientists are, and Image 3: Ellen Sandell MP on the floor of Victorian Parliament. Image 4: Dr Amanda Caples, Lead Scientist of Victoria However, Lead Scientist of Victoria Dr Amanda Caples, one of the key figures in the Victorian Government’s engagement with research, rejects Sandell’s contention. In her discussion with us, Dr Caples spoke of “an ‘and’ conversation rather than choosing one form of research over another…[a discussion about] hav[ing] a good mix of pure and applied research”. She went on: “most pure research has a purpose or use-case in mind – it’s just not typically driven by commercial interests and the applications are not always evident at the outset. The policy outcome that the Victorian Government is seeking to achieve is to mobilise research knowledge to make it available for use in the economy and community more broadly… Applying the brains of the research community to the problems of industry – and I suggest also of government – is not a novel concept. It is the approach of successful innovation clusters from Cambridge UK to Boston and to Israel. It underpins future industries and high-value jobs, attracts talent and supports service industries. We can do it here in Melbourne too!”. Nonetheless, with all these swirling worries, it’s no surprise that the days of blue-skies research investment seem an enchanting vision – the best that humanity can be, boldly seeking out new frontiers of understanding and knowledge. Yet if exciting, perhaps it is but a mirage. A mere two months after the rhetorical highs of his Houston address, in a White House Cabinet Room meeting not declassified until some 40 years later, Kennedy confided in NASA Administrator James E Webb that if he couldn’t find a practical, political use for the research, “we shouldn't be spending this kind of money, because I'm not that interested in space”. A year after that, as poll numbers and public support for his scientific venture started to wane, Kennedy’s language became sharper. He bluntly told Webb that “we’ve got to wrap around in this country, a military use for what we’re doing and spending in space.” Even in this, space research’s golden age, amidst his lofty rhetoric of human adventure, Kennedy had his eye on the polls, the politicians and the price tags. Image 5: President Biden announcing his plans to form ARPA-H, flanked by Vice President Kamala Harris and Speaker Nancy Pelosi. President Biden and Dr Lander appear to be thinking similarly – at least in terms of searching for a large-scale, popular science mandate that the public will buy into. In the wake of a pandemic, their area of concern seems almost too obvious: health. In his April address to a Joint Session of Congress, President Biden announced his plan to develop an “Advanced Research Projects Agency for Health [ARPA-H]…to develop breakthroughs to prevent, detect, and treat diseases like Alzheimer’s, diabetes, and cancer.” Invoking his son Beau, who died of brain cancer in 2015, he announced increased funding to “end cancer as we know it”, declaring that there was “no more worthy investment…nothing that is more bipartisan…[and] it’s within our power to do it”. A cure for cancer. A man on the moon. Striking, almost visceral promises designed to address the worries of their generation: from national defence in the Cold War to public health amidst a pandemic. It’s something that both Sandell and Caples seem focussed on too. Sandell believes that a continued and increasing emphasis on health research is the way forward for Victoria: “Melbourne is a centre for excellence when it comes to medical research, so the state government has a role in supporting and encouraging this to ensure we maintain that position.” Likewise, Caples thrusts mRNA research into focus, listing one of her key priorities as “driv[ing the] development of frontier technologies such as quantum computing and mRNA.” But to her, the story is not just about the lessons from the pandemic itself, but also about how we rebuild. As she told us, “Nations around the world are investing in science, technology and innovation as they rebuild economies impacted by the coronavirus pandemic. This is because global policymakers understand that a high performing science and research system benefits the broader economy.” This narrative of science as the springboard out of COVID echoes a letter President Biden wrote to Dr Lander upon his appointment, describing science’s power to forge “a new path in the years ahead – a path of dignity and respect, of prosperity and security, of progress and common purpose”. Yet, especially for our stateside counterparts, lofty rhetoric seems no guarantee of avoiding an ugly partisan fight. Just a few years after a Trump White House considered science agency cuts en masse, the issue of funding is back on the congressional table. And it’s not all going well. In the USA, almost all budget laws for federal government agencies, departments and programs begin life as appropriations bills – bills that determine how much money is to be allocated (or “appropriated”) to parts of the government. However, this year, an ongoing Senate deadlock has seen Congress unable to pass any appropriations bills whatsoever. To avert a government shutdown (where no agencies have any money and no federal programs can operate), a stopgap continuing resolution has been implemented, temporarily freezing spending at previous levels, allowing the government to keep operating. On October 18, Senator Patrick Leahy (D-VT), Chair of the Senate Appropriations Committee, announced nine appropriations bills to break the logjam and fund the government (including crucial research agencies) through the 2022 fiscal year. Given the political situation, the bills have been riddled with earmarks – unrelated “pork barrel” projects designed to win over wavering votes (the most famous example of this being a $400 million “Bridge to Nowhere” in Alaska, funded inside a 2005 housing, transport and urban development bill). In just one case of this, $64 million has been carved out of the National Oceanographic and Atmospheric Administration (NOAA) for additional “special projects”. Yet despite these concessions, the bills look to be dragged through a long political battle. In a statement released as Leahy announced his plans, Senator Richard Shelby (R-AL), Vice Chair of the Committee, lambasted them as “partisan spending bills…[and] a significant step in the wrong direction”, vowing to oppose them. On 3rd December 2021, a week before this article’s publication, Congress passed another stopgap continuing resolution following a night of political brinksmanship that brought the government within hours of being defunded and shut down. Regardless, at the time of writing, all appropriations bills remain unpassed and the battle rages on into 2022. It’s a confrontational attitude – and one that seems to not be going anywhere anytime soon. After all, closer to home, we’ve seen university education funding become a political football, with Shadow Education Minister the Honourable Tanya Plibersek MP promising a Labor Party election platform predicated on undoing what she characterises as Morrison government “economic vandalism”. But it’s not all bad news. In her responses, Sandell describes herself as “worried about the hyper-partisan nature of politics at the moment but…buoyed by how science and evidence has been at the heart of our response to the pandemic in Australia, at least here in Victoria.” She sees the issue of a partisan approach to scientific advice as stemming from a greater problem: the non-existence of the scientist-politician. In her words, “When I entered State politics, I was shocked to discover less than 10% of politicians had any form of post-high-school scientific training. I think that’s a real loss for our Parliament and our society…I hope that the pandemic has shown the population and Governments the value of listening to evidence, and that this rubs off into other areas of policy-making.” But she refuses to tie the power of “this scientific type of thinking” to her own values. In her experience, a scientific mode of thinking invites “politicians of all persuasions” to work to integrate their ideology with evidence. A fiscally conservative scientist-politician is just as possible as a social-justice-minded and progressive one – the policies produced might well be different, but the base evidence is constant. Caples is similarly optimistic: “Regardless of politics, the foundational principles of science remains [sic] the same - which is to expand our knowledge of the natural world, to progress society and develop innovations to meet its challenges. While debates – political or otherwise – might take place on the peripheries of scientific learning, these tenets remain the same to build the evidence base.” After all, the pitch Webb made in his 1963 meeting with Kennedy relied not on social justice, progressivism nor Cold War tactics. It was so much simpler: “man [is] looking at three times what he’s never looked at before… and he understands the Universe just looking at those three things…these are going to be finite things in terms of the development of the human intellect. And I predict you are not going to be sorry, no Sir, that you did this.” Image 6: Vice President Kamala Harris administering the oath of office to Dr Eric Lander, as his wife Lori watches on. That notion of the lasting good that discovery can do – its place as a rung on the ladder of human progress, in so many ways beyond the governance of a single place or a single point in time – is a sentiment that echoes on through the decades. In June 2020, while being sworn in, Lander took some time to ruminate about the text on which he was swearing his oath of office. He told Vice President Kamala Harris about the particular page of the Mishnah (a Jewish text compiled from oral tradition) he had used, which discusses “a very special concept in Jewish tradition called Tikkun Olam, the repairing of the world…it says we don’t have to finish the work, but we may not refrain from doing that work…[it] speaks in many ways to the work of this administration, of repairing the world, building back better.” Caples’ final comments to OmniSci Magazine touch a similar note – “as a lapsed pharmacologist, I look at my work through the lens of a receptor-ligand binding model. Where the receptor is the problem that needs to be solved (or the opportunity to be pursued) and my role is to build the ligand that holds together long enough to bind to the receptor and effect change. The ligand of course has to have the right composition and 3-dimensional structure to be effective, that is people and governance framework.” Sandell agrees: “With the big challenges our world is facing - from climate change to pandemics - scientists are needed now more than ever. And for those thinking about going into policy-making, make sure you keep an open mind, look at the evidence and collaborate with others. Our world needs policy-makers who have a genuine desire to solve some of the big problems of our time, not people who are just in it for themselves. Don’t get discouraged by what you might see in Question Time or the depressing nature of politics at times - we need good, curious people from all walks of life to join politics to improve the tenor of debate and ultimately improve our world.” The consensus from all three? Yes – every day of the week, politics seems dirtier, and the policy problems seem greater than ever before. They may not be issues we can finish in our lifetimes – the solutions we create may not work, the “ligands” may not “bind”, forever. Yet because we might well fail is no reason to “refrain from doing that work”; no reason for “good, curious people” not to try. But, to the man who we began with – that energised professor in Building 26 at MIT – such philosophical musings are all yet to come. There, Dr Lander cracks a caustic quip about his students, reminding them that only a few centuries before, people thought their brains were only there to vent heat. It’s almost ironic to consider that his job will eventually hinge on a handful of brains and egos on Capitol Hill. Tikkun Olam: repairing the world. It appears to be the gallant ambition of saints. Or maybe the quixotic endeavour of fools. So complicated it hardly seems worth the effort. Throughout this magazine, you have read stories of science’s remarkable ability to create patterns amidst chaos, find the quantitative inside the qualitative and build order amidst disorder. These pages provide the opposite – offering no data to extrapolate, no empirical test to conduct, no nice charts and graphs to view. Just a messy, complicated ball of disordered contradictions. It was Aristotle who suggested that democracy was inherently dangerous – that this bubbling cauldron of ideas and ideals, pragmatism and ideology, could not be entrusted to the ballot box. And, indeed, the notion that everything would be easier should we just “follow the science”, as though science was some monolithic entity with its own set of ideologies, seems tempting from time to time. But the questions raised here – of immediate benefits weighed against blue-sky thinking; of hard-to-sell science pondered alongside popular mandates; of political leanings measured next to scientific impartiality – don’t fit nicely into our boxes of conservative and liberal; left and right; moderate and progressive. They are far too complex, far too nuanced and far too important to be rendered into a three-word slogan, a thirty-word answer, or even a three-thousand-word feature article. And maybe – just maybe - that’s why they matter. Andrew Lim is an Editor and Feature Writer with OmniSci Magazine. Image Credits (in order): Michael C. ’16, from “Eric Lander, spring rolls, and the New York Times” in MIT Admissions Blog Sept 6, 2012; Robert Knudsen. White House Photographs. John F. Kennedy Presidential Library and Museum, Boston; The Office of Ellen Sandell MP; The Office of the Lead Scientist of Victoria; Melina Mara/The Washington Post; Official White House Photo by Cameron Smith, accessed via the Library of Congress. Previous article back to DISORDER Next article

  • The Rise of The Planet of AI | OmniSci Magazine

    The Rise of The Planet of AI By Ashley Mamuko When discussing AI, our minds instinctively fear of sentience and robotic uprising. However, is our focus misplaced on the “inevitable” humanoid future when AI has become ubiquitous and undetectable in our lives? Edited by Hamish Payne & Katherine Tweedie Issue 1: September 24, 2021 Illustration by Aisyah Mohammad Sulhanuddin On August 19th 2021, Tesla announced a bold project on its AI Day. The company plans to introduce humanoid robots for consumer use. These machines are expected to perform basic, mundane household tasks and streamline easily into our everyday lives.With this new release, the future of AI seems to be closing in. No longer do we stand idle, expecting the inevitable humanoid-impacted future. By 2022, these prototypes are expected to launch. It seems inevitable that our future would include AI. We have already familiarised ourselves with this emerging technology in the media we continue to enjoy. Wall E, Blade Runner, The Terminator, and Ex Machina are only a few examples of the endless list of AI-related movies, spanning decades and detailing both our apprehension and acceptance through multiple decades. Most of these movies portray these machines as sentient yet intrinsically evil, as they pursue human destruction. But to further understand the growing field of study of AI, it’s important to first briefly introduce its history and procurement before noting the growing concerns played up in the Hollywood Blockbusters. The first fundamental interpretations of Artificial Intelligence span a vast period of time. Its first acknowledgement may be attributed to the 1308 Catalan poet and theologian Ramon Llull. His work Ars generalis ultima (The Ultimate General Art) advanced a paper-based mechanical process that creates new knowledge from a combination of concepts. Llull aimed to create a method of deducing logical religious and philosophical truths numerically. In 1642, French mathematician Blaise Pascal invented the first mechanical calculating machine; the first iteration of the modern calculator (1). The Pascaline, as it is now known, only had the ability to add or subtract values using a dial and spoke system (2). Though these two early ideas do not match our modern perceptions of what AI is, they lay the foundation of pushing logical processes to do more than just mechanical means. These two instances in history foreshadow the use of mechanical devices in performing human cognitive functions. Not till the 1940s and early 1950s did we finally obtain the necessary means of more complex data processing systems. With the introduction of computers, the novelty of algorithms created a more streamlined function of storing, computing, and producing. In 1943, Warren McCulloch and Walter Pitts founded the idea of artificial neural networks in their paper “A Logical Calculus of Ideas Immanent in Nervous Activity” (3). This presented the notion of computers behaving similar to a human mind and introduced the subsection of “deep learning”. Alan Turing proposed a test to assess a human’s ability to differentiate between human behaviour and robotic behaviour. In 1950, the Turing Test (later known as the Imitation Game) asked participants to identify if the dialogue they were engaging with was with another person or a machine (4). Despite the breakthroughs made in this expertise, the term Artificial Intelligence wasn’t finally coined till 1955 by John McCarthy of AI. Later on, McCarthy along with many other budding experts would hold the famous 1956 Dartmouth College Workshop (5). This meetup of a few scientists would later be pinpointed in history as the birth of the AI field. As the field continued to grow, more public concerns were raised alongside the boom of science fiction literature and movies cropping up. The notorious 1968 movie 2001: A Space Odyssey shaped such a role into the public perception of the field that by the 1960s and 1970s, an AI Winter occurred. Very little notable progress was made in the field due to the lack of funding based on fear (6). Finally after some time had passed and some more advancements were made with algorithm technology, the notable Deep Blue chess game against Gary Kasparov. The event occurring in May 1997 where the Deep Blue robot beat world champion chess superstar Gary Kasparov marked a silence ushering of perhaps a “decline in human society” at the fall of the machine. Fast forward to now, AI has traversed through leaps and bounds to achieve a much more sophisticated level of algorithms and machine learning techniques. To further understand the uses of AI, I interviewed Dr Liz Sonenberg, a professor in the School of Computing and Information Systems at The University of Melbourne and is a Pro Vice-Chancellor (Research Infrastructure and Systems) in Chancellery Research and Enterprise. She’s an expert in the field and has done a multitude of research. "Machine learning is simply a sophisticated algorithm to detect patterns in data sets that has a basis in statistics." With this algorithm, we have been able to implement it in a variety of our daily tech encounters. AI sits behind the driving force of Google Maps and navigation, as well as voice control. It can easily be found anywhere. “Just because these examples do not exhibit super intelligence, does not mean they are not useful,” Dr Sonenberg explains. Dr Sonenberg alludes that the real problem with AI lies within it’s fairness. These “pattern generating algorithms” at times “learn from training sets not representative of the whole population, which can end up with biased answers.” With a flawed training set, a flawed system is in place. This can be harmful to certain demographics and cause a sway on consumer habits. With AI-aided advice, the explanation behind outcomes and decisions are not supported either. Algorithms are only able to mechanically produce an output, but not explain them. With more high-stakes decisions untrusted upon the reliability of AI, the issue of flawed algorithms becomes more pronounced. With my interview with Dr Sonenberg, not one moment was the fear of super-intelligence, robot uprisings, and the likes brought up... With the new-found knowledge of AI’s current concerns I brought up with Dr Sonenberg, I conducted another interview with Dr Tim Miller, a Professor of Computer Science in the School of Computing and Information Systems at The University of Melbourne, and Dr Jeannie Paterson, a Professor teaching subjects in law and emerging technologies in the School of Law at The University of Melbourne. They both are also Co-Directors at The Centre for Artificial Intelligence and Digital Ethics (CAIDE). As we began the interview, Dr Miller explained again that AI “is not magic” and implements the use of “math and statistics”. Dr Paterson was clear to bring up that anti-discrimination laws have been in place but as technology evolves and embeds itself more into public domain, it must be scrutinised. The deployment of AI can easily cause harm to people due to systems not being public, causing sources to be difficult to identify and causily attribute. With the prospect of biased algorithms, a fine dissonance occurs. Dr Miller elaborated on the use of AI in medical imaging used in private hospitals. As private hospitals tend to attract a certain echelon of society, the training set is not wholly representative of the greater population. “A dilemma occurs with racist algorithms… if it is not used [outcomes] could be worse.” When the idea of a potential super-intelligent robot emerging in the future was brought into conversation, the two didn’t seem to be very impressed. “Don’t attribute superhuman qualities [to it],” says Dr Paterson. Dr Miller states that the trajectory of AI’s future is difficult to map. Predictions in the past of how AI progresses with it’s abilities have occurred, but they occur much later than expected… easily decades later. The idea of super-intelligence also poses the question on how to define intelligence. “Intelligence is multidimensional, it has its limits,” says Dr Miller. In this mystical future world of AI, a distinction is placed not just on, “what will machines be able to do but what will not have them do,” states Dr Miller. “This regards anything that requires social interaction, creativity and leadership”; so the future is aided by AI, not dictated by it. However, in a more near future, some very real concerns are posed. Job security, influence on consumer habits, transparency, law approach, and accountability are only a few. With more and more jobs being replaced by machines, every industry is at stake. “Anything repetitive can be automated,” says Dr Miller. But this does not instinctively pose a negative, as more jobs will be created to further aid the use of AI. And not all functions of a job can be replaced by AI. Dr Paterson explains with the example of radiology that AI is able to diagnose and interpret scans, but a radiologist does more than just diagnose and interpret on a daily basis. “The AI is used to aid in the already existing profession, not simply overtake it.” Greater transparency is needed in showing how AI uses our data. “It shouldn’t be used to collect data unlimitedly,” says Dr Paterson, “is it doing what’s being promised, is it discriminating people, is it embedding inequality?” With this in mind, Dr Paterson suggests that more law authorities should be educated on how to approach topics regarding AI. “There needs [to be] better explanation… [We] need to educate judges and lawyers.” With the notorious Facebook-Cambridge Analytica scandal of 2018, the big question of accountability was raised. The scandal involved the unwarranted use of data from 87 million Facebook users by Cambridge Analytica which served to support the Trump campaign. This scandal brought to light how the data we used can be exploited nonconsensually and used to influence our behaviours, as this particular example seemed to sway the American presidential election. Simply put, our information can be easily exploited and sent off to data analytics to further influence our choices. This creates the defence that apps “ merely provide a [service], but people use [these services] in that way,” as said by Dr Miller. Simply put, the blame becomes falsely shifted onto the users for the spread of misinformation. The impetus, however, should lie with social networking sites disclosing to it’s users more transparency on their data usage and history as well as providing adequate protection on their data. To be frank, the future of robotic humanoid AI integrating seamlessly into human livelihoods will not occur within our lifetimes, or potentially even our grandchildren’s. The forecast seems at best, unpredictable; and at worst, unattainable due to the complexity of what constitutes full “sentience”. However, this does not indicate that AI lies dormant within our lives. The fundamental technology based in computing, statistics, and information systems lays most of the groundwork for most transactions we conduct online, whether monetary or social or otherwise. AI and it’s promises should not be shunted aside due to the misleading media surrounding it’s popularised definition and “robot uprisings” but rather taught more broadly to all audiences. So perhaps Elon Musk’s fantastical ideas of robotic integration will not occur by 2022 but the presence of AI in modern technologies should not go unnoticed. References: 1. "A Very Short History of Artificial Intelligence (AI)." 2016. Forbes. https://www.forbes.com/sites/gilpress/2016/12/30/a-very-short-history-of-artificial-intelligence-ai/?sh=38106456fba2. 2. “Blaise Pascal Invents a Calculator: The Pascaline.” n.d. Jeremy Norma's Historyofinformation.com. https://www.historyofinformation.com/detail.php?id=382. 3, 4, 6. “History of Artificial Intelligence.” n.d. Council of Europe. https://www.coe.int/en/web/artificial-intelligence/history-of-ai. 5. Smith, Chris, Brian McGuire, Ting Huang, and Gary Yang. 2006. “The History of Artificial Intelligence,” A file for a class called History of Computing offered at the University of Washington. https://courses.cs.washington.edu/courses/csep590/06au/projects/history-ai.pdf.

  • ​Meet OmniSci Writer Rachel Ko

    Curious what an OmniSci Editor-in-Chief actually does? We spoke to Rachel about drawing anatomy, interviewing a med student hero, and helping build the the science communication universe! Rachel is a writer and Editor-in-Chief at OmniSci, now in her first year of the Doctor of Medicine. For Issue 4: Mirage, she is writing an interview with science communicator, Dr Karen Freilich. Meet OmniSci Writer and Committee Member Rachel Ko Rachel is a writer and Editor-in-Chief at OmniSci, now in her first year of the Doctor of Medicine. For Issue 4: Mirage, she is writing an interview with science communicator, Dr Karen Freilich. interviewed by Caitlin Kane What are you studying? I am currently studying a Doctor of Medicine and I’m in my first year. Before that, I was studying a Bachelor of Biomed. What first got you interested in science? Exposure through education, stuff I’d studied in school. It sparked interests outside of school and I realised it was something that I wanted to pursue as a career. Something that really reinforced my love for science was doing a major in human structure and function, so anatomy. I really enjoyed that I could weave it in with my other passions in things like art and drawing and painting. I was able to look at science in a way that was really the artsy side of science. It's something I’ve tried to pursue with OmniSci as well. Do you have any advice for younger students? Don’t be afraid of trying all areas of science. Because I loved a specific area of science so much, I wanted to make sure that was what reeled me in as compared to other things. I tried a bunch of research projects, some of them I didn’t really love and I had to stick it out to the end, but then I could tick that off my list as having done that, and never have to do it again. But then I did another project which was 3D modelling a bone. It was just me sitting there for hours with a pen, drawing the bone in 3D space, which was very much up my alley. Don’t be afraid of trying everything, even if it feels like a waste of time in the moment. It isn't, it’s the process of filtering out and finding out what you love. And I’m still in that process. I have no idea what kind of medicine I want to go into, but I’m going by process of elimination and finding where I fit in the realm of science in that way. How did you get involved with OmniSci? Like I said, I like the artsy side of science. I actually sought out a few non-science related magazines at uni. I’ve always been into journalism and I love writing as well, so it made sense for me to look into that in my undergrad years. OmniSci emerged during those undergrad years and I thought, “Perfect!” I was a columnist first and I started doing some illustrations as well. Then I dropped my role at Farrago completely just to concentrate on this because I found it was a really nice intersection of what I love to do. My column was about vestigial features, like useless body parts, which I thought would be a fun, light column–I just wanted something cute and fun. So I started that, and now… I’m in the committee. What is your role at OmniSci? I am an Editor-in-Chief at the moment, and I have also written one of the pieces for Issue 4, purely because of my love for writing and contributing. I might step in as an illustrator at some point… I’m hoping in this break I can sit down and draw a little more than I used to. As Editors-in-Chief, we work with the committee to coordinate the things being published and try to envision what role OmniSci plays within the science communication universe. And whilst figuring out what we’re publishing and putting out to the world, we’re also trying to include the rest of the student community. We also have social events so that we can share our love for…whether it’s science or art or writing… any of the parts that OmniSci encompasses. We're there to keep everything chugging along!. What is your favourite thing about contributing at OmniSci so far? The people that you meet along the way. I do eventually want to pursue science communication myself, alongside medicine. I don’t know what that will look like, but I know that the people who will be involved in that space are the people you meet at the moment. Even with the committee, chatting about things and discussing interests has been super enlightening. When you expand that to the rest of the OmniSci community, I think it’s super super rewarding. Also seeing something tangible come out of it all… I just love seeing the magazine come together. When we printed it—though not ideal for the environment for every issue—to have the paper magazine in our hands from last year was super rewarding to see. Can you give us a sneak peak of what you're working on this issue? Well as Editor-in-Chief, the whole issue is kind of our collective baby! Personally I interviewed Dr Karen Freilich, a GP specialising in sexual health and working in education as well. I was lucky enough to have her as one of my sexual health elective tutors. She also started a podcast when she was in medical school called Humerus Hacks. It is basically super famous within the med student community. It sounds like such a simple thing, but just to hear her and the friend she started the podcast with talk things through and make things entertaining… it was such a fresh way of getting the information out. It’s kind of what we do at OmniSci: make science more accessible to people who might feel intimidated by those bigger, wider topics that they might never have ventured into. And the whole point of a magazine is to get information out to more people, and to spark interest, and show people that these things exist. As a med student, I kind of came across it as naturally as you could have. And as she was my tutor, I thought it was such an important opportunity to talk to her about why she did it and where she sees science communication going. What do you like doing in your spare time (when you're not contributing at OmniSci)? Well, there’s the anatomical art. I haven’t had a lot of time to do that… and I’ve been really wanting to try and incorporate it into my study but I spend a lot of time on one painting so it wouldn’t have been time efficient. But my plan for this break is to go to a bar, get myself a drink and just paint on my own… relax in that way. Otherwise, I play the violin, something I like to destress. It’s actually been a surprisingly big part of my life in med because there's a medical student orchestra. The rehearsals are quite long but it’s actually quite worth it to be sitting there not thinking about medicine. And yeah, just catching up with friends, going cafe hopping, bar hopping, that’s what I like to spend time doing. Which chemical element would you name your firstborn child (or pet) after? Let me pull up a visual aid. I actually don’t mind chemistry, but after year twelve I’ve kind of put a line between myself and it. Have you seen that trend online where people are pulling up words that would be really pretty baby names if they didn’t mean what they meant? Ooh, I’m going to go with Livermorium, Liv for short. Element 160. There’s some good ones—you could go Rutherfordium, Ruth for short. Read Rachel's articles Silent Conversations: How Trees Talk to One Another Wiggling Ears Our Microbial Frenemies Hiccups The Evolution of Science Communication Law and Disorder: Medically Supervised Injection Centres “Blink and you’ll miss it”: A Third Eyelid? Mighty Microscopic Warriors!

  • Where The Wild Things Were | OmniSci Magazine

    Where The Wild Things Were By Ashleigh Hallinan We may consider ourselves to be the most advanced species on the planet, but this has come at the cost of the natural world. Delve into this article to gain insight into how ecosystem restoration plays a role in nature-based solutions for biodiversity loss and climate change mitigation globally. Edited by Niesha Baker & Caitlin Kane Issue 1: September 24, 2021 Illustration by Jess Nguyen The scale of threats posed to humanity and the natural world is confronting and difficult to grasp. The natural world is being pushed towards its brink, but it’s not too late to act. Ecosystem restoration plays an important role in nature-based solutions for biodiversity loss, food insecurity, and climate change. Global discourse and action also need to continue moving towards greater acknowledgement of Traditional Owners and local communities in biodiversity conservation efforts and climate change resilience. Ecosystem degradation is an accelerating calamity of our own making. A recent study from Frontier Forest and Global Change shows that humans have altered 97 per cent of the Earth's land, meaning a mere 3 per cent of land remains untouched, or ‘ecologically intact’ (1). ‘Ecosystem degradation’ refers to the loss of natural productivity from environments as a result of human activity. Many of the world’s ecosystems have been pushed beyond the point of unassisted self-recovery due to a mix of stressors, most of which are human-induced. Ecosystems are made up of interacting organisms and the physical environment in which they are found, so disturbing the balance of an ecosystem can be disastrous for all the living things relying on it, including humans. If trends of ecosystem degradation continue, 95 per cent of the Earth’s land could become degraded by 2050 (2). In this scenario, we would face irreversible damage. But how does this affect you and me? Beyond the role ecosystem degradation plays in accelerating climate change and the loss of countless species from our planet, its impact on ecosystem services is also of great significance. Ecosystem services are the benefits humans derive from the natural environment. These range from the oxygen we breathe to aesthetic appreciation of the natural environments around us. These services are necessary for life to exist on Earth, and without them, our quality of life would decline drastically. Luckily for us, humans are capable of learning from their mistakes, and efforts are being made to address these global concerns. Ecosystem restoration is the process of reversing ecosystem degradation to regain environmental health and sustainability. This often involves re-introducing plant and animal populations that may have been lost, as well as restoring their habitats. Abandoned farmland is one example of where this can be achieved. Farmlands are one of the most vital ecosystems in sustaining humankind. Not only do they provide us with food, but they are also home to a variety of organisms within and above the soil. Many of these organisms play a critical role in soil health, which is essential for agriculture. Agriculture has transformed human societies and fuelled a global population that has grown from one billion to almost eight billion people since around 1804 (3). This has had significant consequences on natural systems worldwide, particularly as farmland has continuously expanded into surrounding landscapes. Agroecosystems now cover around 40 per cent of Earth's terrestrial surface (4). However, despite a growing demand for food due to the world’s rapidly increasing population, the amount of farmland being abandoned outweighs the amount of land being converted to farmland (5). There are an estimated 950 million to 1.1 billion acres of deserted farmland globally (6). This unproductive farmland could be converted to meet conservation goals and mitigate the impacts of climate change. For example, farmland could be regenerated with carbon-capturing forests. These would contribute to sequestering large amounts of anthropogenic CO2, water retention, soil fertility, and providing habitats for a variety of organisms. Abandoned farmland could also be re-established with native vegetation to provide habitats for animals. This was the case at the Monjebup Nature Reserves, located in south-west Western Australia (WA) on Noongar Country, established by Bush Heritage Australia between 2007 and 2014 (7). Despite being a biodiversity hotspot, animals and plants in the Monjebup Nature Reserves have faced many threats. These were mainly in the form of introduced species and land clearing for agriculture. Decades of land clearing resulted in a transition from deep-rooted woody vegetation systems to shallow-rooted annual cropping systems across the south-western Australian landscape. This caused a decrease in natural habitats and accumulation of salt in soil and water, which contributed significantly to biodiversity loss. In 2007, Bush Heritage Australia secured the Monjebup Nature Reserves in a bid to establish important conservation areas. Since then, they have restored nearly 1,000 acres of cleared land in the north of the Reserve (8). An important contributor to the success of this project was Indigenous knowledge, which reflects a long history of close connection with the land. These unique human-land relationships provide opportunities for learning in environmental research, particularly regarding land management and sustainability. The Monjebup Nature Reserves now protect a significant patch of native bushland on the land of the Noongar-Minang and Koreng people. This has been critical in restoring the heavily cleared landscape between WA's Stirling Ranges and Fitzgerald River National Parks, reconnecting remnant bush in the south with that of the Corackerup Nature Reserve further north. It has also provided habitat for vulnerable animal species such as the Malleefowl, Western Whipbird, Carnaby's Cockatoo, and Tammar Wallaby. Local knowledge plays a critical role in re-introducing plants and animals by identifying species suitable to particular environments. In the Monjebup Nature Reserves, re-introduction of native plants involved research on local plant communities and soil conditions in immediately surrounding areas. This research also involved communication with Traditional Owners who had used the area for gathering raw materials, food processing, hunting, stone tool manufacturing, and seasonal movement over millennia (9). Seeds of suitable flora were then collected in and around the site for the restoration works. It is crucial that consultation with Traditional Owners, like that seen in the Monjebup Nature Reserves project, becomes a more common practice. An estimated 37 per cent of all remaining natural lands are under Indigenous management (10). These lands protect 80 per cent of global biodiversity and the majority of intact forests, highlighting the value of Indigenous knowledge (11). We have left ourselves a challenging yet attainable goal. Raising public awareness on the importance of ecosystems and improving our knowledge on the interconnectedness of the natural world will be key to decreasing our impacts on Earth's incredible ecosystems. In March 2019, the United Nations General Assembly announced 2021 to 2030 as the Decade on Ecosystem Restoration (12). El Salvador’s Minister of Environment and Natural Resources, Lina Pohl, proposed the creation of the Decade in a speech to the General Assembly. More than 70 countries from all latitudes quickly jumped on board, committing to safeguarding and restoring ecosystems globally (13). 2030 also happens to be the deadline for the Sustainable Development Goals, which are a collection of 17 interlinked global goals designed to address the global challenges we face, and provide a ‘blueprint to achieve a better and more sustainable future for all’ (14). 2030 is also the year scientists have identified as the last chance to prevent catastrophic climate change (15). As part of the Decade on Ecosystem Restoration, the United Nations has called for countries to make the pledge to restore at least 2.5 billion acres of degraded land - an area larger than China (16). This will require international cooperation, led by the UN Environment Programme and the Food and Agriculture Organisation. Humans have an essential role in halting and reversing the damage that has been caused so far. Ecosystem restoration is not a quick or easy process. It requires deep, systematic changes to the economic, political, and social systems we currently have in place. But the natural world is finite, and it is important we continue taking steps towards a more sustainable future. References: 1. Plumptre, Andrew J., Daniele Baisero, R. Travis Belote, Ella Vázquez-Domínguez, Soren Faurby, Włodzimierz Jȩdrzejewski, Henry Kiara, Hjalmar Kühl, Ana Benítez-López, Carlos Luna-Aranguré, Maria Voigt, Serge Wich, William Wint, Juan Gallego-Zamorano, Charlotte Boyd . “Where Might We Find Ecologically Intact Communities?” Frontiers in Forests and Global Change 4 (15 April 2021): 1-13. https://doi.org/10.3389/ffgc.2021.626635. 2, 4. Scholes, Robert, L Montanarella, Anastasia Brainich, Nichole Barger. “The Assessment Report on Land Degradation and Restoration: Summary for Policymakers”. Bonn, Germany: Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES), 2018. https://ipbes.net/sites/default/files/2018_ldr_full_report_book_v4_pages.pdf 3. Food and Agriculture Organisation of the United Nations,“FAOSTAT”, Accessed 8 September 2021, http://www.fao.org/faostat/en/#home . 5, 6. Yang, Yi, Sarah E. Hobbie, Rebecca R. Hernandez, Joseph Fargione, Steven M. Grodsky, David Tilman, Yong-Guan Zhu, Yu Luo, Timothy M. Smith, Jacob M. Jungers, Ming Yang, Wei-Qiang Chen. “Restoring Abandoned Farmland to Mitigate Climate Change on a Full Earth”. One Earth 3, no. 2 (August 2020): 176–86. https://doi.org/10.1016/j.oneear.2020.07.019. 7, 8, 9. Bush Heritage Australia,“Monjebup Nature Reserves (WA),” Accessed 8 September 2021, https://www.bushheritage.org.au/places-we-protect/western-australia/monjebup . 10. Garnett, Stephen T., Neil D. Burgess, Julia E. Fa, Álvaro Fernández-Llamazares, Zsolt Molnár, Cathy J. Robinson, James E. M. Watson, Kerstin K.Zander, Beau Austin, Eduardo S. Brondizio, Neil French Collier, Tom Duncan, Erle Ellis, Hayley Geyle, Micha V. Jackson, Harry Jonas, Pernilla Malmer, Ben McGowan, Amphone Sivongxay, Ian Leiper. “A Spatial Overview of the Global Importance of Indigenous Lands for Conservation‘. Nature Sustainability 1, no. 7 (July 2018): 369–74. https://doi.org/10.1038/s41893-018-0100-6 . 11. Ogar, Edwin, Gretta Pecl, and Tero Mustonen. ‘Science Must Embrace Traditional and Indigenous Knowledge to Solve Our Biodiversity Crisis’. One Earth 3, no. 2 (August 2020): 162–65. https://doi.org/10.1016/j.oneear.2020.07.006. 12, 13, 14, 15. United Nations Environment Programme and the Food and Agriculture Organization of the United Nations, “About the UN Decade,” Accessed 8 September 2021, http://www.decadeonrestoration.org/about-un-decade . 16. United Nations Environment Management Group, “The UN Sustainable Development Goals – UN Environment Management Group”, Accessed 8 September 2021, https://unemg.org/our-work/supporting-the-sdgs/the-un-sustainable-development-goals/ .

  • ​Meet OmniSci Designer Jolin See

    New to science? New to Melbourne? New to OmniSci? Yes, yes and yes! We spoke to Jolin about joining OmniSci with an art background, growing through challenges, and her best local exhibit recommendations. Jolin is a designer at OmniSci and an exchange student from Singapore studying Psychology and Arts & Culture Management. For Issue 4: Mirage, she is contributing to our website, and to two articles as an illustrator. Meet OmniSci Designer Jolin See Jolin is a designer at OmniSci and an exchange student from Singapore studying Psychology and Arts & Culture Management. For Issue 4: Mirage, she is contributing to our website, and to two articles as an illustrator. interviewed by Caitlin Kane What are you studying? I am an exchange student doing psychology and arts management. Do you have any highlights of your uni career so far? Recently my friend showed me around campus. Parkville in particular is really pretty so I guess it would be a nice thing to romanticise your student life. I think that was one of the highlights. She showed me the secret garden at the Bioscience Building, which was really nice. It’s fun to just explore and stuff. What is your role at OmniSci and how would you explain it to someone? I am an illustrator. I guess using visual cues and using design processes to communicate text, communicate ideas. That’s how I would describe my role, or describe what I want to do when I illustrate. What first got you interested in science? I don’t know, I think this is my attempt to reconcile both arts and science. I feel like a lot of artists try to stay in their own little circles. Like if you’re doing art you just do art. If you’re doing theatre you only know how to do theatre and you never branch out to visual art or music or even psychology… But I think it is good to have many disciplines under your belt. You don’t have to be super good at every single thing, but I guess it helps in every single thing that you do if you have knowledge about everything else. Like you can transfer skills or knowledge from one discipline to another. I think that's very valuable. That’s what got me interested in science, because I'm not doing science in school, except psychology. Back at the management university where I’m from we do more managerial psychology, like HR and marketing, we don’t really do clinical psychology. It has been interesting, because here in UniMelb I am doing a clinical psych mod, which is very very different from what I do back home. Like the topics they choose to uncover are very different. It is expanding my knowledge, my horizons. And what stage are you up to in the process now? Just reading the first drafts, so familiarising myself with them. Trying to grasp the ideas, because I think a lot of them are beyond what I’ve ever known, so trying to grasp that first. How did you get involved with OmniSci? I heard about it first at O-Week. I met you [Editor-in-Chief Caitlin] at Southbank campus, so then we talked. I was planning on joining clubs but I didn’t know what club I wanted to join. This is one of the two clubs that I joined—I also joined the Bubble Tea Society. I just wanted to do something meaningful and nice while I’m here, rather than just travelling and having fun and everything. I thought it would be nice to get to know people and talk about our ideas and see how our perspectives are different, especially because I’m so far away. And also reconciling art and science. We always highlight the differences between science and art, but I thought that OmniSci would be an amazing place to create a bridge between that. I’ve also had ideas of starting my own communications channel about psychology facts, because a lot of things that I’ve learnt at school have been very useful in my own personal life. Perhaps this way of making science accessible through art would be helpful for the general public. There are people out there who want to share and impart the knowledge that they have. I thought OmniSci might be a nice place to start doing that. What is your favourite thing about contributing at OmniSci so far? I think having the opportunity itself is the best part. It takes a lot to start a magazine on your own, so to have that platform is a big thing. The accessibility, the opportunity given to put your work out there, or have your ideas made concrete and shared with everyone. I think that’s the best thing. Low barriers of entry! Can you share something you're excited about working on this issue? Collaborating with the writers! It’s one thing to work alone and develop your ideas, and it’s another to develop them with someone else. I’m really looking forward to exploring how my style can adapt to newer themes. What do you like doing in your spare time when you're not contributing at OmniSci? I like to go to book stores, art galleries, theatre…just a bunch of arts stuff. Do you have any recommendations for theatre, anything that you’ve seen recently? I was at Malthouse Theatre a few months back, and it was really good. I really recommend Malthouse. There’s a State Library Exhibition on fringe festivals in Australia . I really believe in fringe stuff, so I think that’s a really thought-provoking exhibition to reflect on what we define as “good” and “bad” art. I also went to watch Patroclus and Achilles at the UniMelb Shakespeare company. It’s important to support student theatre because that’s where future artists start out! Which chemical element would you name your firstborn child (or pet) after? Oh my god, it’s so painful…I’m going to go with Potassium, so I can nickname them K. I’ll call them K all the time, except when I’m mad—then I’ll call them Potassium. See Jolin's designs PT PT Real Life Replicants

  • Belly bugs: the aliens that live in our gut

    By Lily McCann < Back to Issue 3 Belly bugs: the aliens that live in our gut By Lily McCann 10 September 2022 Edited by Andrew Lim and Zhiyou Low Illustrated by Helena Pantsis Next Figure 1 (1): "Animalcules" The figures above may look exceedingly simple to you. Beautifully drawn, yes, but nothing particularly complicated —mere ovals and lines of black ink. If I told you that the drawings were 350 years old, your interest might be piqued by that fascination we hold for all historical relics. You might wonder what the images are attempting to portray. You would only be more confused, however, were I to describe them to you using the name they were known by to the artist: “animalcules”. (2) These drawings, penned by a Dutch draughtsman in the early 1680s, are the first known depictions of bacteria from inside a human body (2). They were discovered by a man called Anthonie van Leeuwenhoek in a sample taken from between his teeth. Leeuwenhoek had examined “animalcules” in various water samples before turning to saliva, analysing the shape and movements of the little cells beneath his microscope, which he made from hand-crafted glass mounted between plates of brass. It is now known that these “animalcules” are in fact bacteria, and that they are avid colonisers not only of our mouths but every other body surface, too. These single-celled organisms parted ways with animals some 2.7 billion years ago in evolution and could not appear any more alien to ourselves (3). Though simple in structure and function, they are capable of populating the most inhospitable and extraterrestrial of environments. In fact, Deinococcus radiodurans (pictured below) can survive for years in the harsh vacuum of space (4). Figure 2 (5): Deinococcus radiodurans Freaky, right? The evolutionary distance between bacteria and ourselves does not seem to deter them from entering into the most intimate of symbiotic relationships with us. Despite their alien-ness, despite billions of years of divergent evolution, we have not lost the ability to communicate with these distant relatives of ours. In fact, communication with bacteria is a daily and essential part of our lives. The reason we can still chat with these creatures is that they are made up of the same basic “stuff” that we are: genetic material made of sugars, phosphates and nitrogen bases to dictate our functions; proteins to carry out our cellular processes; membranes to hold us together. All these aspects form a common basis for language. Just as human languages consist of orally transmitted units of sounds that can be translated and understood, bacteria can impart signals in the form of particles that can be decoded and acted upon by our own cells. One example of this kind of dialogue is the production of molecules called short chain fatty acids by bacteria that digest plant materials in our gut. These bacteria impart their gratitude to us for supplying them with suitable foods by releasing short chain fatty acids, which in turn tell our gut not to worry, signalling our cells and instructing them to reduce inflammation, build up our gut wall and even help fix our blood pressure. These molecules can also travel to the brain, where they are thought to influence the release of various signals including that of the “feel-good” hormone serotonin. (6) There’s a whole world of dialogue beyond this often referred to as the gut-brain axis of health. Research into the area has revealed that signals produced by gut bacteria are extremely influential in a number of conditions including anxiety and Parkinson’s disease. These relationships often work both ways, giving rise to a strange “chicken-and-egg” situation: those who demonstrate symptoms of such conditions are found to carry altered gut bacterial populations, and altering gut bacteria can in turn change symptoms. For example, in a cruel experiment involving the separation of infant monkeys from their mothers, the stress caused by separation changed the distribution of bacteria colonies in the infants’ guts, whilst administering a certain bacteria often imparted to infants by their mothers was found to reverse the symptoms of this stress (7). The way that bacteria can change our very emotions has significant implications for our idea of personhood. What are we, if how we act depends on the alien cells we carry in our digestive tracts? Perhaps we ought to extend our definition of identity to include these little cells that are truly, it seems, a part of how we are—another organ of our body, even. Happily (for those of you who support the philosophy of a ‘growth mindset’), the way our gut influences our minds is subject to manipulation. And we do not need a scientist to isolate and administer a certain bacterial species to us in order to change it; evidence suggests that simply altering what we eat can have a profound influence. Dietary change is known to directly alter bacterial gut colonies, and the change shown to bring about the most harmonious of conversations with our gut is increasing our intake of dietary fibre. Flooding our gut community with plentiful fibre causes a rush of signals from bacteria that promote gut health, mental health and healthy ageing. In contrast, a low fibre diet can promote diabetes, cardiovascular problems and, for pregnant mothers, may compromise the neural functioning of a developing child (8). What does this mean for medicine? Can we harness the billion-year old dialogue between our cells and the aliens that colonise our gut for our own benefit? Can we coax these residents into a mutually beneficial relationship by approaching them in the right tone? These questions are gradually gaining popularity among the scientific community as trials of probiotic administration are explored in the context of treating illnesses from depression to gastrointestinal disorders (9). We are yet to see where such studies will lead us. When the outside world seems increasingly bleak, I find comfort in the fact that within us rumbles on the activity of an intricate and disinterested universe, completely alien to and yet an integral part of ourselves. Like farmers of a garden in times of shortage, we exist in a state of codependency with the world we nurture inside our bodies. If we foster a good relationship with its inhabitants, they can protect us from the afflictions of illness, sadness and madness that threaten our species day by day. References : 1. The Royal Society. Bacteria from Leeuwenhoek's mouth [Internet]. 2022 [cited 17 March 2022]. Available from: https://royalsocietypublishing.org/cms/asset/2bf20f9f-28e1-4126-bd7e-f92950899a2b/rstb20140344f03.jpg 2. Lane N. The unseen world: reflections on Leeuwenhoek (1677) ‘Concerning little animals’ | Philosophical Transactions of the Royal Society B: Biological Sciences [Internet]. Philosophical Transactions of the Royal Society B: Biological Sciences. 2022 [cited 17 April 2022]. Available from: https://royalsocietypublishing.org/doi/10.1098/rstb.2014.0344 3. Cooper G. The Origin and Evolution of Cells [Internet]. Ncbi.nlm.nih.gov. 2022 [cited 17 April 2022]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK9841/#:~:text=The%20eukaryotes%20developed%20at%20least,is%20from%20present%2Dday%20eukaryotes 4. Cox M, Battista J. Deinococcus radiodurans — the consummate survivor. Nature Reviews Microbiology. 2005;3(11):882-892. 5. 5. The European Synchroton. Deinococcus radiodurans [Internet]. 2022 [cited 5 May 2022]. Available from: https://www.esrf.fr/UsersAndScience/Experiments/MX/Research_and_Development/Biology/Deinococcus_radiodurans 6. De Angelis M, Piccolo M, Vannini L, Siragusa S, De Giacomo A, Serrazzanetti D et al. Fecal Microbiota and Metabolome of Children with Autism and Pervasive Developmental Disorder Not Otherwise Specified. PLoS ONE. 2013;8(10):e76993. 7. Bailey M, Coe C. Maternal separation disrupts the integrity of the intestinal microflora in infant rhesus monkeys. Developmental Psychobiology. 1999;35(2):146-155. 8. Buffington S, Di Prisco G, Auchtung T, Ajami N, Petrosino J, Costa-Mattioli M. Microbial Reconstitution Reverses Maternal Diet-Induced Social and Synaptic Deficits in Offspring. Cell. 2016;165(7):1762-1775. 9. Kazemi A, Noorbala A, Azam K, Eskandari M, Djafarian K. Effect of probiotic and prebiotic vs placebo on psychological outcomes in patients with major depressive disorder: A randomized clinical trial. Clinical Nutrition. 2019;38(2):522-528. Previous article Next article alien back to

OmniSci Magazine acknowledges the Traditional Owners and Custodians of the lands on which we live, work, and learn. We pay our respects to their Elders past and present.

Subscribe to the Magazine

Follow Us on Socials

  • Facebook
  • Instagram
  • LinkedIn
UMSU Affiliated Club Logo
bottom of page