Search Results
111 results found for ""
- Real Life Replicants | OmniSci Magazine
< Back to Issue 4 Real Life Replicants by Elijah McEvoy 1 July 2023 Edited by Yasmin Potts and Megane Boucherat Illustrated by Jolin See Hal, Ultron and (of course) the Terminator. Comparisons between these fictional, world-destroying, artificial intelligence systems and those in our current age of AI are seemingly never-ending. As a child born with a lightsaber in hand, I find these sensationalist remarks endlessly entertaining. Not only because it baffles me to see concepts once relegated to the realm of science fiction be discussed as serious news topics, but also because they’ve got their references all mixed up. The current challenge posed by the new wave of generative artificial intelligence doesn’t come in the form of a ruthless, gun-toting Arnie. It comes in the form of replicants. Just like these uncannily human androids from Ridley Scott’s cult classic Blade Runner, the rapidly increasing capacity of AI to talk, look and create like humans is beginning to blur the line between what is authentically human and what is the product of an algorithm. From the posh C3P0 to the snarky Cortana, having a friendly AI sidekick has always been a childhood dream of mine. This dream has now become a reality with the rise in AI chat-bots. At the forefront of these is Replika, an app that enables users to talk to their own personalized AI via the use of text-like messages. For its two million users (1), Replika provides a variety of functions. For some, Replika acts as a friend in times of loneliness; a feature that contributed to its spike in users during the height of the COVID-19 pandemic (2). For others, as founder Eugenia Kuyda suggests, it provides a space for users to “open up” about personal or mental health issues and “feel accepted” by a human-like figure (1). For many though, Replika is a digital romantic partner. While it is easy to snicker at the concept of an AI girlfriend, those with past relationship trauma or those living in environments that may be hostile towards their sexuality have used Replika as an outlet to explore genuine feelings of love in a safe setting (3). However, with such attachment comes the chance for exploitation. As stated by Nir Eisikovits, Director of the Applied Ethics Centre at the University of Massachusetts, his concern is “not whether machines are sentient” but rather our own tendency “to imagine that they are” (4). Like the holographic billboards for the AI “JOI” in Blade Runner 2049, suggestive advertisements and aggressive flirting by the AI itself have all been employed by Replika to encourage users to stay on the app and pay a premium subscription for explicit content (5). While Replika has since removed sexual material, the large backlash from users at this decision (6) highlights the unethically coercive power such mimicry of human personality could have on consumers. For years, we’ve been warned of the danger of manipulative TV advertisements encouraging excessive junk food consumption and gambling. Imagine what could be done when that ad is no longer a 30 second video but instead an anthropomorphized AI tailored exactly to you, your interests and your vulnerabilities. Not only is AI replicating the way we talk, but also how we look. From videos of an animated Tom Cruise to convincing photos of a Balenciaga-wearing Pope (7), advanced deepfake videos and prompt-generated images from AI systems like DALL-E are becoming easier to create by the day (8). While the most prominent use of this technology is currently in the form of harmless memes, it can and has been used for more sinister means. Women across the world have had their faces used in non-consensual deepfake pornography, often as a form of revenge or blackmail (9). Furthermore, a fabricated video of Volodymyr Zelensky surrendering to Vladimir Putin that spread on social media last year proves AI’s unsettling potential in political disinformation (8). While fakes like that of Zelensky may have been taken down quickly due to easily identifiable tells, in many cases the damage has already been done the moment people see these videos or images. Mistrust in the news is heightened and real evidence can be accused of being AI generated, a strategy already implemented by Donald Trump to dismiss evidence of his misogyny (8). Although the current usage of this technology is concerning enough, the degradation of truth within society will only worsen as these replicants become increasingly accurate and faster to produce (8). Still, it is the ability for AI to complete jobs once thought to be uniquely human that will result in the largest change to the current status quo. Latest estimates from Goldman Sachs state that close to 300 million jobs globally could be automated by the current AI wave (10). The threat of job losses due to automation is far from new, stretching all the way back to 1811 with the infamous Luddites protesting factory machines (11). However, generative AI is placing a greater variety of jobs in jeopardy due to its ability to exude human creativity, giving rise to what Stanford Professor Victor R. Lee entitles an “authenticity crisis” (12). One of those jobs is that of writers. A common phrase amongst movie reviewers today is “this could have been written by an AI”. While usually used as a jab against the latest Marvel movie, large language models like Chat GPT that are capable of identifying and mimicking patterns in writing make it more than just a joke. Amongst calls for better conditions for screenwriters, a key demand from the Writers Guild of America in this year's Los Angeles writers’ strike was that AI will not be used to write or rewrite scripts (13). When you combine the growing authenticity of these AI with the greedy desires of major studios, it is not a far cry to suggest that producers may use AI to quickly generate scripts for generic soap operas and cash grab Netflix movies, leaving the human creatives to simply ‘clean-up’ these stories at a cut pay rate. Despite all these concerns, generative AI does have the ability to immeasurably improve society. The capacity of this technology to increase workplace efficiency (10), accelerate scientific progress (14) and constantly amuse us with clips of a rapping Joe Biden is undeniable. With the cat out of the bag, innovation in these areas cannot nor should not be halted completely. However, if sci-fi movies have taught me anything useful, it’s that we should not be blinded by the potential of scientific progress. Whether it be through governmental action to regulate the use of AI in industry or the scientific development of better deepfake-spotting technology to help stifle disinformation, implementing safeguards around AI is crucial in avoiding its “ethical debt” (15). Whilst looking to the world of science fiction as an indication of our future may be a bit far-fetched, it may also be a needed reminder of the world scientists should try not to replicate. References Tong A. AI company restores erotic role play after backlash from users ‘married’ to their bots [Internet]. The Sydney Morning Herald. 2023 [cited 2023 May 14]. Available from: https://www.smh.com.au/world/north-america/ai-company-restores-erotic-roleplay-after-backlash-from-users-married-to-their-bots-20230326-p5cvao.html Clarke L. ‘I learned to love the bot’: meet the chatbots that want to be your best friend. The Observer [Internet]. 2023 Mar 19 [cited 2023 May 14]; Available from: https://www.theguardian.com/technology/2023/mar/19/i-learned-to-love-the-bot-meet-the-chatbots-that-want-to-be-your-best-friend The rise and fall of replika [Internet]. [cited 2023 May 14]. Available from: https://www.youtube.com/watch?v=3WSKKolgL2U Eisikovits N. AI isn’t close to becoming sentient – the real danger lies in how easily we’re prone to anthropomorphize it [Internet]. The Conversation. 2023 [cited 2023 May 14]. Available from: http://theconversation.com/ai-isnt-close-to-becoming-sentient-the-real-danger-lies-in-how-easily-were-prone-to-anthropomorphize-it-200525 Cole S. ‘My ai is sexually harassing me’: replika users say the chatbot has gotten way too horny [Internet]. Vice. 2023 [cited 2023 May 14]. Available from: https://www.vice.com/en/article/z34d43/my-ai-is-sexually-harassing-me-replika-chatbot-nudes ‘My wife is dead’: How a software update ‘lobotomised’ these online lovers. ABC News [Internet]. 2023 Feb 28 [cited 2023 May 14]; Available from: https://www.abc.net.au/news/science/2023-03-01/replika-users-fell-in-love-with-their-ai-chatbot-companion/102028196 How to spot an ai-generated image like the ‘balenciaga pope’ [Internet]. Time. 2023 [cited 2023 May 14]. Available from: https://time.com/6266606/how-to-spot-deepfake-pope/ Wong M. We haven’t seen the worst of fake news [Internet]. The Atlantic. 2022 [cited 2023 May 14]. Available from: https://www.theatlantic.com/technology/archive/2022/12/deepfake-synthetic-media-technology-rise-disinformation/672519/ Atillah IE. AI could make deepfake porn an even bigger threat for women [Internet]. euronews. 2023 [cited 2023 May 14]. Available from: https://www.euronews.com/next/2023/04/22/a-lifelong-sentence-the-women-trapped-in-a-deepfake-porn-hell Toh M. 300 million jobs could be affected by latest wave of AI, says Goldman Sachs | CNN Business [Internet]. CNN. 2023 [cited 2023 May 14]. Available from: https://www.cnn.com/2023/03/29/tech/chatgpt-ai-automation-jobs-impact-intl-hnk/index.html McClelland C. The impact of artificial intelligence - widespread job losses [Internet]. IoT For All. 2023 [cited 2023 May 14]. Available from: https://www.iotforall.com/impact-of-artificial-intelligence-job-losses Hollywood writers are on strike over an AI threat that some are warning is coming for you next. ABC News [Internet]. 2023 May 5 [cited 2023 May 14]; Available from: https://www.abc.net.au/news/2023-05-06/hollywood-writer-s-strike-over-pay-and-artificial-intelligence/102296704 Lee VR. Generative AI is forcing people to rethink what it means to be authentic [Internet]. The Conversation. 2023 [cited 2023 May 14]. Available from: http://theconversation.com/generative-ai-is-forcing-people-to-rethink-what-it-means-to-be-authentic-204347 The AI revolution in science [Internet]. [cited 2023 May 14]. Available from: https://www.science.org/content/article/ai-revolution-science Fiesler C. AI has social consequences, but who pays the price? Tech companies’ problem with ‘ethical debt’ [Internet]. The Conversation. 2023 [cited 2023 May 14]. Available from: http://theconversation.com/ai-has-social-consequences-but-who-pays-the-price-tech-companies-problem-with-ethical-debt-203375 Previous article Next article back to MIRAGE
- Designing the perfect fish | OmniSci Magazine
< Back to Issue 7 Designing the perfect fish by Andy Shin 22 October 2024 edited by Luci Ackland illustrated by Esme MacGillivray Fish are the oldest known vertebrates, with the earliest fossil evidence dating back to the lower Cambrian period almost 530 million years ago (Shu et al., 1999). Since their inception, fish have exhibited a variety of different physical and behavioural traits to best exploit their environments. Over time, the effectiveness of these traits will be tested through competitive pressures or environmental factors. This raises a rather silly but nonetheless interesting question; if we could design a ‘frankenfish’ using features from other fish, what would the best combination of traits be for our modern oceans? Will older trends still work today? Is there a fish now that is already perfect? To help us answer this question, we will need to set a few ground rules: The idea of a ‘perfect’ animal is incredibly subjective and does not follow any known ecological frameworks. For this thought experiment, our ‘frankenfish’ will need to be able to manage the impacts of climate change and global fisheries. We will assume that the frankenfish must compete with existing species in the ocean. We can choose where we initially release our fish. Other than a rapidly warming ocean, we will assume no catastrophic extinction level event. We will assume that our frankenfish will survive long enough to reproduce at least once, ensuring the initial population is allowed to grow in size. Considerations Thermal tolerance With mean ocean sea surface temperatures predicted to increase by 1-2 degrees Celsius in the next century (Mimura, 2013), we should first design our fish after more tropical or temperate species. If sea surface temperatures become too high, our new fish could move towards the poles. This phenomenon is known as a range shift (Rubenstein et al., 2023) and has already been performed by many different marine species in recent years. When looking at the larval stages of different marine organisms, those that live in higher temperatures are generally better-equipped to deal with changes in the surrounding temperature (Marshall & Alvarez-Noriega, 2020). Trophic position Although it would be fun to simply create a new apex predator, we will need to think of trade-offs between energy expenditure, energy requirements and food availability. As a general rule of thumb, only 10% of caloric energy is transferred through each trophic level (Lindeman, 1942). Essentially, this means an organism at the top of the food chain will need to consume thousands of different organisms over its lifetime. Likewise, a lower-order organism will likely be a food source for a higher one but require less total energy to grow and reproduce over its lifetime. Essentially, there will be more room in the environment for lower-order fish, meaning more individuals can be placed, increasing the chance of successful future reproductive events. Life history and reproductive strategy In the world of ecology, species can broadly be categorised into 2 groups based on life history strategies: r-selected and k-selected species (Pianka, 1970). R-selected species tend to produce large numbers of offspring, develop quickly, and have higher rates of offspring mortality. Likewise, k-selected species develop slower, have less offspring but have higher rates of offspring survivorship. Group behaviours Fish often display group behaviours known as schooling and shoaling. Shoaling refers to a congregation of fish, whilst schooling requires coordinated movement of fish in the same direction. By grouping together, fish have less individual risk of being eaten by a predator and the group’s ability to sense danger is also heightened. Furthermore, schooling behaviour can reduce the energy an individual fish spends whilst swimming by 20% (Marras et al., 2014). Group behaviour may also lead to confusing an inexperienced predator (Magurran, 1990), though many modern predator species have adaptations to take advantage of shoals and schools. There are some drawbacks to group behaviour. Firstly, fish will have access to less food individually as enough food will need to be distributed across the group. Secondly, groups which grow too large attract large numbers of predators and lead to ‘bait balls’, which is essentially a floating buffet for any larger animal. Group behaviour is incredibly common in lower-order fish but is also exhibited in higher order predators such as Tuna and some shark species. It is estimated that almost half of all fish species will partake in group behaviour at some point in their lifecycle. Scales, Plates and Skin The structure of skin has implications for the hydrodynamics of an organism, influencing the level of lift and drag. The type of skin will also influence protection from parasites and predators. We will briefly discuss two types of scales, but other specialised scales exist. The skin of cartilaginous fish (sharks and rays) is composed of microscopic interlocking teeth-like structures known as placoid scales. The unique design of placoid scales facilitates the formation of small whorls whilst moving, reducing the drag experienced by the fish (Helfman et al., 2009, pp. 23–41). Placoid scales also act as a parasite deterrent, comparable to antifouling designs in modern cargo ships. Alternatively, many teleosts (bony fish) are covered in larger (non-microscopic), thinner scales known as leptoid scales (Helfman et al., 2009, pp. 23–41). These are further differentiated into circular and toothed scales (Helfman et al., 2009, pp. 23–41). Circular scales are smoother and uniformed, whilst toothed scales are rougher. Similar to placoid scales, leptoid scales reduce drag experienced by the fish (Roberts, 1993). Additionally, leptoid scales can be highly reflective, allowing for a unique form of camouflage known as silvering (Herring, 2001). Another thing to consider is colour. Red light is almost invisible past 40 metres of depth (National Oceanic and Atmospheric Association, n.d.), whilst blues and greys can. provide better camouflage from predators above and below you through countershading (Ruxton et al., 2004). Extra features – toxins, slime and light These are niche defence mechanisms which reduce the risk of predation. When agitated, Hagfish are able to release a thick, quickly expanding mucus from their skin, blocking the gills of an attacking fish (Zeng et al., 2023). Hagfish are only able to remove excess mucus on their skin by creating a knot with their own body (Böni et al., 2016), which is possible thanks to their eel-like shape. This design may not translate well when creating our own perfect fish, as the elongated shape limits it to the bottom of the ocean (Friedman et al., 2020). Other fish, such as some species of pufferfish, house bacteria in various organs that produce toxins which pool in livers and ovaries. A downside with toxins is that they only work if an attacker is already aware of their effect, meaning at least 1 pufferfish was consumed in the past. Furthermore, some fish species can ignore the effect of certain toxins. Toxin-producing bacteria is acquired through diet, which could limit the dietary range of our frankenfish. Other species of fish such as lionfish, stonefish and some catfish contain specialised venom glands which release toxins along the spines of their fins, which is considered a more efficient delivery method. Even without toxins, sharper fins can act as a deterrent for predators from swallowing you whole. Fish living in deeper waters tend to display bioluminescence, which causes them to produce light with the help of bacteria. This has numerous benefits including startling predators, camouflage, attracting food, and in unique cases allows an animal to see red pigments deep underwater (Young & Roper, 1976; Herring & Cope, 2005). As a downside, humans tend to exploit bioluminescence and use it to find large groups of fish and squid. Past and current champions The armoured fish The armoured fish, known as Placodermi, were a widespread group of fish who were prominent during the Devonian period (419 – 359 mya). The Placoderms are subdivided into 8 orders based on body shape characteristics, the most successful of which was known as Arthrodira. Species in Arthrodira occupied a variety of different niches from apex predators to detrital feeders, but all shared the common feature of jointed armour plates near the neck and face. The Placoderms were never outcompeted in their 60-million-year run. Instead, their time on Earth was cut short by multiple catastrophic events associated with the Late Devonian extinction. This could suggest that without random chance, the Placoderms would never have been dethroned. Sharks Sharks emerged at a similar time to the Placoderms but managed to survive the Late Devonian extinction events. Sharks have a cartilaginous skeleton as well as electromagnetic receptors known as Ampullae of Lorenzini, which are used to detect prey activity. The body plan of sharks has stayed relatively consistent over the last 400 million years, and they’ve managed to survive various extinction level events. The only issue with sharks is their value to humans, leading to millions of sharks being harvested for fins each year. Sharks are a k-selected species and produce only a handful of young. Most sharks deposit a handful of eggs which are protected by a casing and filled with yolk, increasing the fitness of a successful juvenile but also increasing the chance of predation removing it from the gene pool. Smaller egg clutches also mean the loss of a young shark has a higher relative impact on a population compared to a mass spawning species. Bristlemouths and Lanternfish These are similar families of fish and are some of the most abundant vertebrates on the planet. Unlike sharks, these fish are R-selected. Otolith (fish ear bone) samples suggest both families rose to prominence at least 5 million years ago (Přikryl & Carnevale, 2017; Schwarzhans & Carnevale, 2021) due to a massive bloom in phytoplankton. Out of these 2 groups, the Bristlemouths are the most abundant. Although survey data from the deep ocean is rare, prior studies revealed between 70-80% of all deep-sea fish were a variation of a Bristlemouth (Sutton et al., 2010). Despite their abundance, not too much is known about the Bristlemouth due to the depths they inhabit; 1000- 2000 metres. Meanwhile, Lanternfish are responsible for displaying a rising and falling ‘false sea floor’ in early sonar technology, known as the Deep Scattering Layer (Carson et al., 1951/1991). Movement of the layer is attributed to Diel Vertical Migration, a phenomenon where fish will move up and down the water column at certain times of day to avoid predation (Ritz et al., 2011). Constructing our fish Despite the historical success of the Placoderms, current trends in prey behaviours and morphology means armoured jaws are unlikely to be very useful in modern oceans (Bellwood et al., 2015). Furthermore, armoured plates will be heavier compared to scales or cartilage, meaning excess energy will have to be gathered via predation. Given that the oceans are abundant in second-order consumers such as zooplankton and planktotrophic fish, it may be worthwhile to make our new fish a third-order consumer. The sheer abundance of bristlemouths and lanternfish should make up for the inefficiencies of higher trophic levels. Habitat-wise, our new fish should adopt a pelagic (open ocean) lifestyle to best take advantage of the abundant smaller prey animals. When thinking of behaviours, our fish taking a nocturnal approach would work best to exploit the previously mentioned diel vertical migration behaviours seen in bristlemouths and lanternfish. This also allows for daytime predator avoidance, providing our fish the best possible chance to grow in numbers and proliferate. Given the trophic position of our fish, it is reasonable to also give it the capability to form schools and shoals. The group energy costs can be offset by the abundance of prey species, which also exhibit group behaviour. The best place to release our new fish would be somewhere in the mid-latitudes. This would make it more tolerant to higher temperatures and the percentage of global ocean area is only expected to increase in the near future (unless humans can somehow revert anthropogenic climate change). Our fish should be relatively slender and be red in colour. In theory, when combined with the depth of habitat, this will make our frankenfish almost invisible to organisms without additional specialised adaptations. Taking a page from the squid playbook, small bioluminescent regions along the top half of the fish would provide some further camouflage from predators looking down. The spines on our fish’s fins should be longer and sharper than average. For fun, we can also give our fish a venomous gland. Combining long spines with venom could dissuade some predators from eating our fish, through either awkward positioning or risk of poisoning. References Alexander, R. M. (2004). Hitching a lift hydrodynamically - in swimming, flying and cycling. Journal of Biology , 3 (2), 7. https://doi.org/10.1186/jbiol5 Bellwood, David R., Goatley, Christopher H. R., Bellwood, O., Delbarre, Daniel J., & Friedman, M. (2015). The Rise of Jaw Protrusion in Spiny-Rayed Fishes Closes the Gap on Elusive Prey. Current Biology , 25 (20), 2696–2700. https://doi.org/10.1016/j.cub.2015.08.058 Böni, L., Fischer, P., Böcker, L., Kuster, S., & Rühs, P. A. (2016). Hagfish slime and mucin flow properties and their implications for defense. Scientific Reports , 6 (1). https://doi.org/10.1038/srep30371 Carson, R. L., Zwinger, A. H., & Levinton, J. S. (1991). The sea around us . Oxford University Press. (Original work published 1951) Feld, K., Kolborg, A. N., Nyborg, C. M., Salewski, M., Steffensen, J. F., & Berg Sørensen, K. (2019). Dermal Denticles of Three Slowly Swimming Shark Species: Microscopy and Flow Visualization. Biomimetics , 4 (2), 38. https://doi.org/10.3390/biomimetics4020038 Friedman, S. T., Price, S. A., Corn, K. A., Larouche, O., Martinez, C. M., & Wainwright, P. C. (2020). Body shape diversification along the benthic– pelagic axis in marine fishes. Proceedings of the Royal Society B: Biological Sciences , 287 (1931), 20201053. https://doi.org/10.1098/rspb.2020.1053 Helfman, G. S., Collette, B. B., Facey, D. E., & Bowen, B. W. (2009). The Diversity of Fishes: Biology, Evolution and Ecology. In Copeia (2nd ed., Issue 2, pp. 23–41). John Wiley & Sons. Herring, P. (2001). The Biology of the Deep Ocean. In Oxford University Press eBooks . Oxford University Press. https://doi.org/10.1093/oso/9780198549567.001.0001 Herring, P. J., & Cope, C. (2005). Red bioluminescence in fishes: on the suborbital photophores of Malacosteus, Pachystomias and Aristostomias. Marine Biology , 148 (2), 383–394. https://doi.org/10.1007/s00227-005-0085- 3 Irigoien, X., Klevjer, T. A., Røstad, A., Martinez, U., Boyra, G., Acuña, J. L., Bode, A., Echevarria, F., Gonzalez-Gordillo, J. I., Hernandez-Leon, S., Agusti, S., Aksnes, D. L., Duarte, C. M., & Kaartvedt, S. (2014). Large mesopelagic fishes biomass and trophic efficiency in the open ocean. Nature Communications , 5 (1). https://doi.org/10.1038/ncomms4271 Lindeman, R. L. (1942). The Trophic-Dynamic Aspect of Ecology. Ecology , 23 (4), 399–417. https://doi.org/10.2307/1930126 Magurran, A. E. (1990). The adaptive significance of schooling as an anti predator defense in fish. Annales Zoologici Fennici , 27 (2), 51–66. Marras, S., Killen, S. S., Lindström, J., McKenzie, D. J., Steffensen, J. F., & Domenici, P. (2014). Fish swimming in schools save energy regardless of their spatial position. Behavioral Ecology and Sociobiology , 69 (2), 219–226. https://doi.org/10.1007/s00265-014-1834-4 Marshall, D. J., & Alvarez-Noriega, M. (2020). Projecting marine developmental diversity and connectivity in future oceans. Philosophical Transactions of the Royal Society B: Biological Sciences , 375 (1814), 20190450. https://doi.org/10.1098/rstb.2019.0450 Mimura, N. (2013). Sea-level rise caused by climate change and its implications for society. Proceedings of the Japan Academy, Series B , 89 (7), 281–301. https://doi.org/10.2183/pjab.89.281 National Oceanic and Atmospheric Association. (n.d.). Why are so many deep sea animals red in color?: Ocean Exploration Facts: NOAA Office of Ocean Exploration and Research . Oceanexplorer.noaa.gov . https://oceanexplorer.noaa.gov/facts/red-color.html Pianka, E. R. (1970). On r- and K-Selection. The American Naturalist , 104 (940), 592–597. https://doi.org/10.1086/282697 Přikryl, T., & Carnevale, G. (2017). Miocene bristlemouths (Teleostei: Stomiiformes: Gonostomatidae) from the Makrilia Formation, Ierapetra, Crete. Comptes Rendus Palevol , 16 (3), 266–277. https://doi.org/10.1016/j.crpv.2016.11.004 Ritz, D. A., Hobday, A. J., Montgomery, J. C., & Ward, A. J. W. (2011). Chapter Four - Social Aggregation in the Pelagic Zone with Special Reference to Fish and Invertebrates. Advances in Marine Biology , 60 (1), 161–227. https://doi.org/10.1016/B978-0-12-385529-9.00004-4 Roberts, C. D. (1993). Comparative morphology of spined scales and their phylogenetic significance in the Teleostei. Bulletin of marine science , 52 (1), 60-113. Rubenstein, M. A., Weiskopf, S. R., Bertrand, R., Carter, S., Comte, L., Eaton, M., Johnson, C. G., Lenoir, J., Lynch, A., Miller, B. W., Morelli, T. L., Rodriguez, M. A., Terando, A., & Thompson, L. (2023). Climate change and the global redistribution of biodiversity: Substantial variation in empirical support for expected range shifts. Journal of Environmental Evidence , 12 (7). https://doi.org/10.1186/s13750-023-00296-0 Ruxton, G. D., Speed, M. P., & Kelly, D. J. (2004). What, if anything, is the adaptive function of countershading? Animal Behaviour , 68 (3), 445–451. https://doi.org/10.1016/j.anbehav.2003.12.009 Schwarzhans, W., & Carnevale, G. (2021). The rise to dominance of lanternfishes (Teleostei: Myctophidae) in the oceanic ecosystems: a paleontological perspective. Paleobiology , 47 (3), 446–463. doi.org The rise to dominance of lanternfishes (Teleostei: Myctophidae) in the oceanic ecosystems: a paleontological perspective | Paleobiology | Cambridge Core The rise to dominance of lanternfishes (Teleostei: Myctophidae) in the oceanic ecosystems: a paleontological perspective - Volume 47 Issue 3 Shu, D.-G., Luo, H.-L., Morris, S. C., Zhang, X.-L., Hu, S.-X., Chen, L., Han, J., Zhu, M., Li, Y., & Chen, L.-Z. (1999). Lower Cambrian vertebrates from south China. Nature , 402 (6757), 42–46. https://doi.org/10.1038/46965 Sutton, T. T., Wiebe, P. H., Madin, L., & Bucklin, A. (2010). Diversity and community structure of pelagic fishes to 5000m depth in the Sargasso Sea. Deep Sea Research Part II: Topical Studies in Oceanography , 57 (24-26), 2220–2233. https://doi.org/10.1016/j.dsr2.2010.09.024 Young, R., & Roper, C. (1976). Bioluminescent countershading in midwater animals: evidence from living squid. Science , 191 (4231), 1046–1048. https://doi.org/10.1126/science.1251214 Zeng, Y., Plachetzki, D. C., Nieders, K., Campbell, H., Cartee, M., Pankey, M. S., Guillen, K., & Fudge, D. (2023). Epidermal threads reveal the origin of hagfish slime. ELife , 12 , e81405. https://doi.org/10.7554/eLife.81405 Previous article Next article apex back to
- Hiccups | OmniSci Magazine
< Back to Issue 2 Hiccups Evolution might be a theory, but if it’s evidence you’re after, there’s no need to look further than your own body. The human form is full of fascinating parts and functions that hold hidden histories - from the column that brought you a deep-dive into ear wiggling in Issue 1, here’s an exploration of why we hiccup! by Rachel Ko 10 December 2021 Edited by Katherine Tweedie and Ashleigh Hallinan Illustrated by Gemma Van der Hurk Hiccups bring a special brand of chaos to a day. It’s one that lingers, rendering us helpless and in suspense; a subtle, internal chaos of quiet frustration that forces us to drop what we’re doing to monitor each breath – in and out, in and out – until the moment they abruptly decide to stop. It’s an experience we’ve all had – one that can hit anyone at any time – and for most of us, hiccups are a concentrated episode of inconvenience; best ignored, and overcome. Yet, despite our haste to get rid of them when they interrupt our day, hiccups seem to have mystified humans for generations. Historically, the phenomenon has been the source of many superstitions, both good and bad. A range of cultures associate them with the concept of remembrance: in Russia, hiccups mean someone is missing you (1), while an Indian myth suggests that someone is remembering you negatively for the evils you have committed (2). Likewise, in Ancient Greece, hiccups were a sign that you were being complained about (3), while in Hungary, they mean you are currently the subject of gossip. On a darker note, a Japanese superstition prophesises death to one who hiccups 100 times. (4) Clearly, the need to justify everything, even things as trivial as hiccups, has always been an inherent human characteristic, transcending culture and time. As such, science has more recently made its attempt at objectively identifying a reason behind the strange phenomenon of hiccups. After all, if you take a step back and think about it, hiccups are indeed quite strange. Anatomically, hiccups (known scientifically as singultus) are involuntary spasms of the diaphragm (5): the dome-like sheet of muscle separating the chest and abdominal cavities. (6) The inspiratory muscles, including the intercostal and neck muscles, also spasm, while the expiratory muscles are inhibited. (7) These sudden contractions cause a rapid intake of air (“hic”), followed by the immediate closure of the glottis or vocal cords (“up”). (8) As many of us have probably experienced, a range of stimuli can cause these involuntary contractions. The physical stimuli include anything that stretches and bloats the stomach, (9) such as overeating, rapid food consumption and gulping, especially of carbonated drinks. (10) Emotionally, intense feelings and our responses to them, such as laughing, sobbing, anxiety and excitement, can also be triggers. (11) This list is not at all exhaustive; in fact, the range of stimuli is so large that hiccups might be considered the common thread between a drunk man, a Parkinson’s disease patient and anyone who watches The Notebook. The one thing that alcohol, (12) some neurological drugs (13) and intense sobbing (14) do have in common is that they exogenously stimulate the hiccup reflex arc. (15) This arc involves the vagal and phrenic nerves that stretch from the brainstem to the abdomen which cause the diaphragm to contract involuntarily. (16) According to Professor Georg Petroianu from the Herbert Wertheim College of Medicine, (17) many familiar home remedies for hiccupping – being scared, swallowing ice, drinking water upside down – interrupt this reflex arc, actually giving these solutions a somewhat scientific rationale. While modern research has successfully mapped out the process of hiccups, their purpose is still unclear. As of now, the hiccup reflex arc and the resulting diaphragmatic spasms seem to be effectively useless. Of the existing theories for the function of hiccups, the most prominent seems to be that they are a remnant of our evolutionary development, (18) essentially ‘vestigial’; in this case, a feature that once served our amphibian ancestors millions of years ago, but now retain little of their original function. (19) In particular, hiccups are believed to be a relic of the ancient transition of organisms from water to land. (20) When early fish lived in stagnant waters with little oxygen, they developed lungs to take advantage of the air overhead, in addition to using gills while underwater. (21) In this system, inhalation would allow water to move over the gills, during which a rapid closure of the glottis – which we see now in hiccupping – would prevent water from entering the lungs. It is theorised that when descendants of these fish moved onto land, gills were lost, but the neural circuit for this glottis closing mechanism was retained. (22) This neural circuit is indeed observable in human beings today, in the form of the hiccup central pattern generator (CPG). (23) CPGs exist for other oscillating actions like breathing and walking, (24) but a particular cross-species CPG stands out as a link to human hiccupping: the neural CPG that is also used by tadpoles for gill ventilation. Tadpoles “breathe” in a recurring, rhythmic pattern that shares a fundamental characteristic feature with hiccups: both involve inspiration with closing of the glottis. (25) This phenomenon strengthens the idea that the hiccup CPG may be left over from a previous stage in evolution and has been retained in both humans and frogs. However, the CPG in frogs is still used for ventilation, while in humans, the evolution of lungs to replace gills has rendered it useless. (26) Based on this information, it seems hiccupping lost its function with time and the development of the human lungs, remaining as nothing more than an evolutionary remnant. However, we cannot discredit hiccupping as having become entirely useless as soon as gills were lost. Interestingly, hiccupping has only been observed in mammals – not in birds, lizards or other air-breathing animals. (27) This suggests that there must have been some evolutionary advantage to hiccupping at some point, at least in mammals. A popular theory for this function stems from the uniquely mammalian trait of nursing. (28) Considering the fact that human babies hiccup in the womb even before birth, this theory considers hiccupping to be almost a glorified burp, intended to remove air from the stomach. This becomes particularly advantageous when closing the glottis prevents milk from entering the lungs, aiding the act of nursing. (29) Today, we reduce hiccups to the disorder and disarray they bring to our day. But, next time you are hit with a bout of hiccups, take a second to find some calm amidst the chaos and appreciate yet another fascinating evolutionary fossil, before you hurry to dismiss them. After that, feel free to eat those lemons or gargle that salty water to your diaphragm’s content. References Sonya Vatomsky, "7 Cures For Hiccups From World Folklore," Mentalfloss.Com, 2017, https://www.mentalfloss.com/article/500937/7-cures-hiccups-world-folklore. Derek Lue, "Indian Superstition: Hiccups | Dartmouth Folklore Archive," Journeys.Dartmouth.Edu, 2018, https://journeys.dartmouth.edu/folklorearchive/2018/11/14/indian-superstition-hiccups/. Vatomsky, "7 Cures For Hiccups From World Folklore". James Mundy, "10 Most Interesting Superstitions In Japanese Culture | Insidejapan Tours," Insidejapan Blog, 2013, https://www.insidejapantours.com/blog/2013/07/08/10-most-interesting-superstitions-in-japanese-culture/. Paul Rousseau, "Hiccups," Southern Medical Journal, no. 88, 2 (1995): 175-181, doi:10.1097/00007611-199502000-00002. Bruno Bordoni and Emiliano Zanier, "Anatomic Connections Of The Diaphragm Influence Of Respiration On The Body System," Journal Of Multidisciplinary Healthcare, no. 6 (2013): 281, doi:10.2147/jmdh.s45443. Christian Straus et al., "A Phylogenetic Hypothesis For The Origin Of Hiccough," Bioessays no. 25, 2 (2003): 182-188, doi:10.1002/bies.10224. Straus et al., "A Phylogenetic Hypothesis For The Origin Of Hiccough," 182-188. John Cameron, “Why Do We Hiccup?,” filmed for TedEd, 2016, TED Video, https://ed.ted.com/lessons/why-do-we-hiccup-john-cameron#watch. Monika Steger, Markus Schneemann, and Mark Fox, "Systemic Review: The Pathogenesis And Pharmacological Treatment Of Hiccups," Alimentary Pharmacology & Therapeutics 42, no. 9 (. 2015): 1037-1050, doi:10.1111/apt.13374. Lien-Fu Lin, and Pi-Teh Huang, "An Uncommon Cause Of Hiccups: Sarcoidosis Presenting Solely As Hiccups," Journal Of The Chinese Medical Association 73, no. 12 (2010): 647-650, doi:10.1016/s1726-4901(10)70141-6. Steger, Schneemann and Fox, "Systemic Review: The Pathogenesis And Pharmacological Treatment Of Hiccups," 1037-1050. Unax Lertxundi et al., "Hiccups In Parkinson’s Disease: An Analysis Of Cases Reported In The European Pharmacovigilance Database And A Review Of The Literature," European Journal Of Clinical Pharmacology 73, no. 9 (2017): 1159-1164, doi:10.1007/s00228-017-2275-6. Lin and Huang, "An Uncommon Cause Of Hiccups: Sarcoidosis Presenting Solely As Hiccups," 647-650. Peter J. Kahrilas and Guoxiang Shi, "Why Do We Hiccup?" Gut 41, no. 5 (1997): 712-713, doi:10.1136/gut.41.5.712. Steger, Schneemann and Fox, "Systemic Review: The Pathogenesis And Pharmacological Treatment Of Hiccups," 1037-1050. Georg A. Petroianu, "Treatment Of Hiccup By Vagal Maneuvers," Journal Of The History Of The Neurosciences 24, no. 2 (2014): 123-136, doi:10.1080/0964704x.2014.897133. Straus et al., "A Phylogenetic Hypothesis For The Origin Of Hiccough," 182-188. Cameron, “Why Do We Hiccup?” Michael Mosley, "Anatomical Clues To Human Evolution From Fish," BBC News, published 2011, https://www.bbc.com/news/health-13278255. Michael Hedrick and Stephen Katz, "Control Of Breathing In Primitive Fishes," Phylogeny, Anatomy And Physiology Of Ancient Fishes (2015): 179-200, doi:10.1201/b18798-9. Straus et al., "A Phylogenetic Hypothesis For The Origin Of Hiccough," 182-188. Straus et al., "A Phylogenetic Hypothesis For The Origin Of Hiccough," 182-188. Pierre A. Guertin, "Central Pattern Generator For Locomotion: Anatomical, Physiological, And Pathophysiological Considerations," Frontiers In Neurology 3 (2013), doi:10.3389/fneur.2012.00183. Hedrick and Katz, "Control Of Breathing In Primitive Fishes," 179-200. Straus et al., "A Phylogenetic Hypothesis For The Origin Of Hiccough," 182-188. Daniel Howes, "Hiccups: A New Explanation For The Mysterious Reflex," Bioessays 34, no. 6 (2012): 451-453, doi:10.1002/bies.201100194. Howes, "Hiccups: A New Explanation For The Mysterious Reflex," 451-453. [1] Howes, "Hiccups: A New Explanation For The Mysterious Reflex," 451-453. Previous article back to DISORDER Next article
- Foreword by Dr Jen Martin | OmniSci Magazine
Forward by Dr. Jen Martin Issue 1: September 24, 2021 Image from Dr Jen Martin I’m sitting cross-legged on top of an enormous granite boulder which is intricately patterned with lichen and overlooking the forest. It’s pouring with rain and the weather matches my mood: I feel confused and lost even though I know this patch of forest better than the back of my hand. For years I’ve been working here night and day studying the behaviour of a population of bobucks or mountain brushtail possums. I know their movements and habits intimately, having followed some of these possums from the time they were tiny pink jellybeans in their mothers’ pouches. I love this forest and its inhabitants, and I feel privileged beyond words that I’ve had glimpses of the world through these animals’ eyes. But today I feel despondent. I chose ecology because I wanted to make a difference in the world: to protect animals and the habitats they depend on. And there’s no question field research like mine is essential to successful conservation. To protect wildlife, we need to understand what different species do and what they need. But there’s a missing link. The people with the power to make decisions to conserve nature aren’t the same people who will read my thesis or papers or go to my conference talks. And that’s why I feel so lost. Why have I never learned how to share my work with farmers, policy makers and voters, all of whom may never have studied science? Why didn’t anyone tell me: it’s not just the science that matters, it’s having the confidence and the skills to communicate that science to the people who need to know about it? "Science isn't finished until it is communicated." Sir Mark Walport Fast forward 15 years and I can see my afternoon of despair in the rain was a catalyst. It’s why I decided I needed to learn how to talk and write about science for different audiences. And why I decided the most useful contribution I could make as a scientist was not to do the research myself, but rather to teach other scientists how to communicate effectively about their work. Science communication has been my focus for more than a decade now. You only need think of the Covid-19 pandemic, or the biodiversity or climate crises to realise that scientists play a pivotal role in tackling many of the problems we face. But scientists need to do more than question, experiment and discover; even the most brilliant research is wasted if no one knows it’s been done or the people whose lives it affects can’t understand it. Sir Mark Walport, former Chief Science Advisor to the UK Government, said: ‘Science isn’t finished until it’s communicated’. And I couldn’t agree more. The more scientists who seek out every opportunity to share their work with others - and know how to communicate about their work in effective and engaging ways - the better. And that’s why I couldn’t be more excited about OmniSci. Science really is everywhere, and I invite you to revel in its complexity, wonder, and relevance in these stories. And to applaud the science students behind this magazine who want to share their knowledge and passion with you. These are the scientists the world needs. Dr Jen Martin (@scidocmartin) Founder and Leader of the UniMelb Science Communication Teaching Program (@UniMelbSciComm)
- Peaks and Perspectives: A Word from the Editors-in-Chief | OmniSci Magazine
Issue 7: Apex 22 October 2024 This issue surveys our world from above. So come along, and revel in the expansive view - have a read below! Editorial Peaks and Perspectives: A Word from the Editors-in-Chief by the Editors-in-Chief A word from our Editors-in-Chief. Corals A Coral’s Story: From thriving reef to desolation by Nicola Zuzek-Mayer Nicola sheds light on the devastating future faced by our coral reefs, with the effects of anthropogenic climate change far from having reached its peak. Humans vs Pathogens Staying at the Top of Our Game: the Evolutionary Arms Race by Aizere Malibek As nations vie for military supremacy, Aizere covers a microscopic competition between humans and the microbes evolving strategies against our defences. Seeing Space Interstellar Overdrive: Secrets of our Distant Universe by Sarah Ibrahimi Embark on an epic journey as Sarah explores the cosmic mysterious being revealed by NASA's James Webb Space Teloscope. Fossil Markets Fossil Markets: Under the Gavel, Under Scrutiny by Jesse Allen Diving into the wild world of fossil auctions, Jesse prompts us to ask: who is the real apex predator, the T-rex or hedge-fund billionaires? Cancer Treatments Tip of the Iceberg: An Overview of Cancer Treatment Breakthroughs by Arwen Nguyen-Ngo Icebreakers. Follow Arwen as she recounts the countless stories of the giants before us, who carved a path for our cancer research today. Triangles Pointing the Way: A Triangular View of the World by Ingrid Sefton Guiding us through land, seas and screens, Ingrid explores this humble 3-sided shape as a vital tool of modern society and its many fascinating uses. Anti-ageing Science Timeless Titans: Billionaires defying death by Holly McNaughton From billionaire-backed pills to young blood transfusion, Holly traverses the futuristic world of anti-ageing and asks: what happens when death is no longer inevitable? Brain-computer Implants Neuralink: Mind Over Matter? by Kara Miwa-Dale Would the ability to control a computer with your mind bolster possibilities or bring harm? Kara visualises a possible future under the Neuralink implant. Fish Morphology Designing the perfect fish by Andy Shin With a splash of creativity, Andy concocts the ultimate 'Frankenfish' by investigating the traits that allow fish to flourish in their aquatic environments. Commercial Aviation Soaring Heights: An Ode to the Airliner by Aisyah Mohammad Sulhanuddin Settle in and take a round trip with Aisyah through the evolution of commercial aviation, from the secrets of aircraft cuisine to the mechanics of staying afloat.
- A Frozen Odyssey: Shackleton’s Trans-Antarctic Expedition | OmniSci Magazine
< Back to Issue 6 A Frozen Odyssey: Shackleton’s Trans-Antarctic Expedition by Ethan Bisogni 28 May 2024 Edited by Rita Fortune Illustrated by Aisyah Mohammad Sulhanuddin The Heroic Age of Antarctic Exploration South of the 66th parallel lies a continent desolate and cruel, where the experiences of those who dared to challenge it are preserved in its ice. Antarctica was deemed Earth’s final frontier by 19th-century explorers, and at the cusp of the 20th century, the ‘Heroic Age of Antarctic Exploration’ was underway (Royal Museums Greenwich, n.d. a). Those who answered the call of the wild, to face the polar elements, would be remembered as heroes. Among the pantheon of Antarctic explorers, none are more celebrated than Sir Ernest Shackleton. An Irishman whose name became synonymous with adventure and peril, Shackleton emerged at the forefront of Britain’s polar conquests. During his Nimrod expedition to reach the magnetic South Pole, Shackleton and his crew found themselves within 100 miles of their goal—only to be thwarted by their human needs (Royal Museums Greenwich, n.d. b). His ambition outmatched the capabilities of those he commanded, so they withdrew for want of survival. Despite the supposed failure of the two-year expedition, Shackleton’s romanticism of exploration, leadership, and unwavering optimism earned him a knighthood in 1909 (Royal Museums Greenwich, n.d. b). In the years following, as other explorers performed increasingly remarkable polar feats, Shackleton was left in limbo. It was during this time that an impossibly ambitious expedition was put forward to him. The plan was as follows: a crew would sail a wooden barquentine, the Endurance, into the Weddell Sea, and land on the Antarctic coast. There, the men would split into groups, and Shackleton would pursue a daring transcontinental journey across Antarctica (Smith, 2021). Despite the questionable feasibility of this plan, a benefactor named James Caird sought to help fund the expedition (Smith, 2021). Thus, these plans were translated into reality, and with a finalised crew of 27, the Endurance was set to sail under the helm of New Zealand captain Frank Worsley. On August 1st, 1914, the Endurance departed Plymouth (PBS, 2002). Explorers of the Antarctic, from left: Ronald Amundsen, Sir Ernest Shackleton, Robert Peary (Antarctica 21, 2017) The Imperial Trans-Antarctic Expedition Into the Weddell Sea, December 5th, 1914 After their momentary recess in South Georgia, and the recent pickup of a stowaway, the Grytviken whaling station remained the crew's last semblance of civilisation (PBS, 2002). Shackleton was well aware of the challenges that loomed ahead—notorious for its hostility, the Weddell Sea was Antarctica’s first line of defence (Shackleton, 1919). In the coming days, the Endurance encountered pack ice, severely slowing its progress. A nightmarish phenomenon for any explorer, pack ice was an abundant drift of sea ice no longer connected to land. While plentiful, navigating it was not impossible—it only required patience, caution, and an intuitive hint of wisdom. But even with worsening conditions, Shackleton proceeded into unclear waters (Shackleton, 1919). The Endurance in the Weddell Sea (Hurley, 1914) Icebound, January 18th, 1915 The Endurance was again ensnared in ice, and this time the ship would not budge. Plagued by regret in pushing ahead, but desperate to break free, Shackleton ordered his men to cease routine. Once again, his ambition outpaced his capabilities, but Shackleton was also a man of determination. They would wait until an opening cleared (Shackleton, 1919). The ship began to drift northward with the ice, but as months passed, so too did any hope of landing. Time was running out, and with winter approaching, the Endurance would soon be engulfed by the long polar night (PBS, 2002). For this expedition to succeed, the crew needed to remain optimistic. A brotherhood formed on the ice, with theatre plays and celebrations to ease their dire worries. The eerie creak of the hull did not deter them from trekking the very ice that imprisoned them. The ship’s Australian photographer, Frank Hurley, captured these moments of perseverance on photographic plates, including the hauntingly beautiful Endurance beset amongst the snow (Shackleton, 1919). The Endurance in the night (Hurley, 1915) Abandon Ship, October 27th, 1915 True to its name, the Endurance weathered the dark winter months. But despite the comfort of a newly rising sun, disaster did not fade with the darkness. A catastrophic ice shift had violently imploded the ship’s hull, and with its fate sealed, the Endurance would not hold. Shackleton gave the order to abandon ship (Shackleton, 1919). Any hope of the expedition continuing was now lost alongside the Endurance , which was silently withering on the ice. Though this was not Shackleton’s first time in Antarctica, nor was it his first disastrous expedition. Stations of emergency supplies established by himself and other explorers were scattered across the islands of the Weddell Sea, each offering glimmers of hope. However, at over 500 kilometres away, they all required a potentially fatal journey (Shackleton, 1919). Frank Wild overlooking the wreck of the Endurance (Hurley, 1915) Ocean Camp, November 1st, 1915 A plan was conjured—they would march across the unforgiving ice, bringing themselves to one of the few sanctuaries along the Antarctic Peninsula. Concerns of risk from Captain Worsley fell on deaf ears; undeterred, Shackleton knew waiting was futile (Worsley, 1931). Leading up, a difficult decision was made to conserve the crew’s rations. Mrs. Chippy, the beloved ship cat of carpenter Harry McNish, was to be killed amongst the other animals (Canterbury Museum, 2018). Although believing it necessary, Shackleton’s remorseful orders to cull the animals aboard had cast a shadow over his leadership (Scott Polar Research Institute, n.d.). The march soon commenced, but horrendous conditions had led the men into a frozen labyrinth. After a pace of only a kilometre a day, the march was abandoned. The crew instead erected ‘Ocean Camp’, and were to wait for the ice to clear a path for their lifeboats (PBS, 2002). Weeks in, the crew's evening was interrupted by the ghostly wailing of the Endurance wreck . Beckoning in the distance, the men gathered to watch its final breaths. On November 21st, the ice finally caved in, and the Endurance was swallowed into the forsaken depths of the Weddell Sea (Worsley, 1931). Ocean Camp (Hurley, 1915) The Rebellion on the Ice, December 27th, 1915 With the crew’s last tether to the world severed, a depression had settled over the camp. Now dragging their lifeboats to open water, a quiet but persistent discontent was beginning to grow. Most of the crew still admired Shackleton as their resolute leader, but some were beginning to lose faith. A frustrated and grieving McNish made his stand, arguing that the loss of the Endurance had nullified Shackleton's command. Shackleton, furious but sympathetic, was able to successfully de-escalate the situation (Scott Polar Research Institute, n.d.). The mutiny was short-lived, but McNish was now under Shackleton's watchful eye. He knew that he would have to inspire hope, and that a rift in the crew would only prompt death. Dragging the lifeboats (Hurley, 1915) Elephant Island, April 14th, 1916 With three lifeboats in possession, a proposal to island-hop was presented. McNish had spent his time reinforcing the boats for open waters, and after careful deliberation, a destination was chosen. Elephant Island was a barren, windswept landscape—a false sanctuary harbouring an inhospitable environment. Landing there was not Shackleton’s first choice, but a fast approaching winter left no alternative (Shackleton, 1919). With Elephant Island looming over the horizon, the boats set forth. Battling the arduous sea, one of the lifeboats, the Dudley Docker , was torn away from the rest during an unprecedented storm. Fading into the vast darkness, the men aboard were presumed dead. No amount of enthusiasm from Shackleton could lift the crew's spirits, who were now delirious and grief stricken (Fiennes, 2022). The following day, a landing was imminent. Nearing the shore, a boat was noticed soaring in the distance. The Dudley Docker pierced through the waves—the crew still alive and following in hot pursuit. Ecstatic and revived with hope, landfall was made. A major milestone had been reached; the crew were now unified and ashore for the first time since South Georgia (Fiennes, 2022). Unfortunately, Elephant Island’s taunting winds carried no whispers of hope. The silence was apparent: this island would be their grave unless contact was made with civilisation. A party must be formed, one that would take the risk and sail into the heavy seas of the Southern Ocean (Shackleton, 1919). The shores of Elephant Island (Hurley, 1916) The Voyage of the James Caird, April 24th, 1916 Shackleton selected a route to a South Georgia whaling station neighbouring the one they had departed in 1914—a harrowing 1500 kilometres across notoriously restless seas. In one of their modified lifeboats, they were to utilise the prevailing westerlies to attempt an impossible sailing feat (Pierson, n.d.). Six men were selected to commander the James Caird : Shackleton, Worsley, McNish, Crean, Vincent, and McCarthy. As the James Caird set sail, a vast ocean of uncertainty lay between Elephant Island and South Georgia (Pierson, n.d.). The voyage was tortuous, with the men severely ill-prepared. From storm-fed waves to frigid winds, the James Caird and those aboard were unlikely to survive the journey. At each turn, however, the determined men managed to stay afloat and push ahead. 17 days passed before the dominant mountains of South Georgia came into view (PBS, 2002). Shackleton, fearing his men would not survive another day at sea, hastened a plan to land on the rocky western shores (Pierson, n.d.). The six men found themselves on the wrong end of the island to the station, and James Caird was in no state to navigate the coast. The capable individuals would have to perform the first trans-island crossing of South Georgia—a far cry from their original ambitions, but daring nonetheless. With only Shackleton, Worsley, and Crean able to attempt the task ahead, McNish, Vincent, and McCarthy were left to establish ‘Peggotty Camp’ in the landing cove (Pierson, n.d.). Waving goodbye to the James Caird (Hurley, 1916) The Crossing of South Georgia, May 10th, 1916 The three men began their journey northward towards the Stromness whaling station. Encountering menacing snow-capped peaks, the men were so close to potential rescue only to be divided by insurmountable odds. Needing to race the approaching night down a 3000-foot mountainside, a makeshift sled was constructed from their little equipment. Rocketing downhill, a rare moment of joy and exhilaration accompanied the men along their daredevilish tactics (Antarctica Heritage Trust, 2015). Exhausted and verging on collapse, the men were now nearing the outskirts of their destination. A whistle in the air had lured them closer, and on May 20th, 1916, contact was finally made. The men were tended to by the distraught station managers, and a rescue party was sent the following day to those abandoned at ‘Peggotty Camp’ (Pierson, n.d.). After multiple attempts to obtain a suitable vessel, the 22 remaining souls holding steadfast on Elephant Island were finally rescued by the Yelcho on August 30th, 1916. Hope was not lost amongst them, as even in his absence their belief in Shackleton kept their spirits alive. Bringing their ordeal to a close, and without a man’s life lost, the crew’s troubles were left behind in the frozen Antarctic (Shackleton, 1919). The Yelcho arrives to rescue the crew (Hurley, 1916) Legacy Published in 1919, ‘South’, Shackleton’s autobiographical recount of the expedition, brought these remarkable stories into the limelight. However, records stricken from the novel hide some concerning truths. While omitting the incident regarding McNish’s mutiny, it was clear Shackleton resented him for introducing doubt during their time of turmoil. Despite his redemption during their voyage to South Georgia, Shackleton recommended McNish not be awarded the Polar medal—a decision still considered mistakenly harsh (Scott Polar Research Institute, n.d.). But despite his flaws and misjudgments, Shackleton was undoubtedly the optimistic and courageous leader you would seek in times of crisis. In 1922, aboard his final expedition to circumnavigate Antarctica, Shackleton suffered a fatal heart attack - and was buried in South Georgia. Regarded as a defining moment, his death signalled the end of the ‘Heroic Age of Antarctic Exploration’ (Royal Museums Greenwich., n.d. b). Exactly one century following, the Endurance was found preserved at the bottom of the Weddell Sea. Its mast still bearing its inscription, the ship remains an enduring remnant of a heroic past. This inspiring tale of survival continues to live on, as one of the greatest stories of human perseverance in the face of the elements. The crew of the Endurance (Hurley, 1915) References Antarctica 21. (2017). Famous Antarctic Explorers: Sir Ernest Henry Shackleton. Antarctica 21 . https://www.antarctica21.com/journal/famous-antarctic-explorers-sir-ernest-henry-shackleton/ Antarctica Heritage Trust (2015). Crossing South Georgia. Antarctic Heritage Trust. https://nzaht.org/encourage/inspiring-explorers/crossing-south-georgia/ Canterbury Museum (2018), Dogs in Antarctica: Tales from the Pack. Canterbury Museum https://antarcticdogs.canterburymuseum.com/themes/hardships Fiennes, R (2022). Remembering a Little-Known Chapter in the Famed Endurance Expedition to Antarctica. Atlas Obscura, https://www.atlasobscura.com/articles/shackleton-endurance-elephant-island Hurley, F. (1914-1916). Imperial Trans-Antarctic Expedition Photographic Plates. [Photographs]. National Library of Australia. https://www.nla.gov.au/collections/what-we-collect/pictures/explore-pictures-collection-through-articles-and-essays/frank PBS (2002). Shackleton’s Voyage of Endurance. PBS Nova. https://www.pbs.org/wgbh/nova/shackleton/1914/timeline.html Pierson, G (n.d.), Excerpt: The Voyage of the James Caird by Enerest Shackleton. American Museum of Natural History. https://www.amnh.org/learn-teach/curriculum-collections/antarctica/exploration/the-voyage-of-the-james-caird Royal Museums Greenwich. (n.d. a). History of Antarctic explorers. Royal Museums Greenwich. https://www.rmg.co.uk/stories/topics/history-antarctic-explorers Royal Museums Greenwich. (n.d. b). Sir Ernest Shackleton. Royal Museums Greenwich. https://www.rmg.co.uk/stories/topics/sir-ernest-shackleton Scott Polar Research Institute (n.d.). McNish, Carpenter. University of Cambridge, Scott Polar Research Institute. https://www.spri.cam.ac.uk/museum/shackleton/biographies/McNish,_Henry/ Shackelton, E (1919). South: The Endurance Expedition. Heinemann Publishing House Smith, M (2021). Shackleton's Imperial Trans-Antarctic Expedition. Shackleton. https://shackleton.com/en-au/blogs/articles/shackleton-imperial-trans-antarctic-expedition Worsley, F (1931). Endurance: An Epic of Polar Adventure. W. W. Norton & Co Previous article Next article Elemental back to
- Tip of the Iceberg: An Overview of Cancer Treatment Breakthroughs | OmniSci Magazine
< Back to Issue 7 Tip of the Iceberg: An Overview of Cancer Treatment Breakthroughs by Arwen Nguyen-Ngo 22 October 2024 edited by Zeinab Jishi illustrated by Louise Cen Throughout the history of science, there have been many firsts. Anaximander, a Greek scholar, was the first person to suggest the idea of evolution. Contrary to popular belief, the Montgolfier brothers were the pioneers of human flight by their invention of the hot air balloon, as opposed to another pair of brothers, the Wright brothers. In 1976, the first ever vaccine was created by an English doctor, who tested his theory in a rather peculiar manner that would not be approved by today’s ethics guidelines (Rocheleau, 2020). While there have been many extraordinary discoveries, there continue to be many firsts and many breakthroughs that have pathed the way for the next steps in research. In particular is research into ground-breaking treatments for cancer patients. 1890s: Radiotherapy (Gianfaldoni, S., Gianfaldoni, R., Wollina, U., Lotti, J., Tchernev, G., & Lotti, T. 2017) In the last decade of the 19th century, Wilhelm Conrad Rцntgen made the discovery of X-rays, drastically changing the medical scene for treating many diseases. From this discovery, Emil Herman Grubbe commenced the first X-ray treatment for breast cancer, while Antoine Henri Becquerel began to delve deeper into researching radioactivity and its natural sources. In the same year that Rцntgen discovered X-rays, Maria Sklodowska-Curie and Pierre Curie shared theirs vows together, and only three years later, discovered radium as a source for radiation. By then, during a time where skin cancers were frequently treated, this discovery had kick-started the research field into X-rays as well as the use of X-rays in the medical field. Scientists and clinicians have gained a greater understanding of radiation as treatment for diseases, but the research does not stop there and the advancement of radiotherapy only continues to thrive. 1940s: First Bone Marrow Transplant (Morena & Gatti, 2011) Following World War II, the physical consequences of war accelerated research into tissue transplantation. Skin grafts were needed for burn victims, blood transfusions needed ABO blood typing, and the high doses of radiation led to marrow failure and death. During this time, Peter Medawar started his research into rejection of skin grafts as requested by the Medical Research Council during World War II. It was a priority for the treatment of burn victims. Medawar had concluded that graft rejection was a result of an immunological phenomenon related to histocompatibility antigens. Histocompatibility antigens are cell surface glycoproteins that play critical roles in interactions with immune cells. They are unique to every individual and essentially flags one’s cell as their own, therefore making every individual physically unique. 1953: First Human Tumour Cured In 1953, Roy Hertz and Min Chiu Li used a drug, methotrexate, to treat the first human tumour — a patient with choriocarcinoma. Choriocarcinoma is an aggressive neoplastic trophoblastic disease, and can be categorised into two types — gestational and non-gestational (Bishop & Edemekong, 2023). The cancer primarily affects women, as it grows aggressively in a woman’s uterus (MedlinePlus., 2024). However, it can also occur in men as part of a mixed germ cell tumour (Bishop & Edemekong, 2023). Methotrexate is commonly used in chemotherapy as it acts as an antifolate antimetabolite that induces a cytotoxic effect on cells. Once methotrexate is taken up by cells, it forms methotrexate-polyglutamate, which in turn inhibits dihydrofolate reductase, an enzyme important for DNA and RNA synthesis (Hanood & Mittal, 2023). Therefore, by inhibiting DNA synthesis, the drug induces a cytotoxic effect on the cancerous cells. Since the first cure of choriocarcinoma using methotrexate, the drug has both been commonly used for chemotherapy and other applications, including as an immunosuppressant for autoimmune diseases (Hanoodi & Mittal, 2023). 1997: First ever targeted drug: rituximab (Pierpont, Limper, & Richards, 2018) Jumping ahead a few decades and 1997 was the year that JK Rowling published Harry Potter and the Philosopher’s Stone . It was also the year that the first targeted anti-cancer drug was approved by the U.S Food and Drug Administration (FDA), rituximab. Ronald Levy created rituximab with the purpose of targeting malignant B cells. B cells express an antigen – CD20 – which allows B cells to develop and differentiate. Rituximab is an anti-CD20 monoclonal antibody, meaning that it targets the CD20 antigens expressed on malignant B cells. It had improved the progression-free survival and overall survival rates of many patients who had been diagnosed with B cell leukemias and lymphomas (Pavlasova & Mraz, 2020). Much like the Philosopher’s Stone, you may consider rituximab to increase longevity of patients diagnosed with B cell cancers. Although Levy created this drug, his predecessors should not be ignored. Prior to his research and development of rituximab, research and development of monoclonal antibodies can be dated all the way back to the late 1970s (Pavlasova & Mraz, 2020). César Milstein and Georges J. F. Köhler developed the first monoclonal antibody in the mid-1970s, and first described the method for generating large amounts of monoclonal antibodies (Leavy, 2016). Milstein and Köhler were able to achieve this by producing a hybridoma – “ a cell that can be grown in culture and that produces immunoglobulins that all have the same sequence of amino acids and consequently the same affinity for only one epitope on an antigen that has been chosen by the investigator” (Crowley & Kyte, 2014). They had produced a cell with origins from a myeloma cell line and spleen cells from mice immunised against sheep red blood cells (Leavy, 2016). Going forward: CAR T Cells The most recent and exciting development in cancer research has been the development and usage of chimeric antigen receptor (CAR) T cells. CAR T cell therapy is a unique therapy customised to each individual patient, as the CAR T cells used are derived from the patient’s own T cells. The process involves leukapheresis, where the patient’s T cells are collected, and these collected T cells are then re-engineered to include the CAR gene. The patient’s own CAR T cells are produced, expanded and subsequently infused back into the patient. The first concept of CAR T cells to be described was in 1987 by Yoshihisa Kuwana and others in Japan. Following this, different generations of CAR T cells have now been developed and trialled, leading to the FDA’s first two approvals for CAR T cells (Wikipedia Contributors, 2024). This research avenue has only scratched the surface, with many individuals now exploring the best collection methods and how best to stimulate the “fittest” T cells - the apex predator of immune cells. A recent paper was published where CAR T cells were trialled as a second line therapy to follow ibrutinib-treated blood cancers. The phase 2 TARMAC study involved using anti-CD19 CAR T cells to treat patients with relapsed mantle cell lymphoma (MCL) who had been exposed to ibrutinib, a drug used to treat B cell cancers by targeting Bruton Kinase Tyrosine (BTK) found in B cells. The study showed that 80% of patients who had previous exposure to ibrutinib and were treated with CAR T cells as a second-line therapy achieved a complete response. Furthermore, at the 13-month follow-up, the 12-month progression free survival rate was estimated to be 75% and the overall survival rate to be 100% (Minson et al., 2024)! It is without a doubt that as humans, we are naturally curious creatures. It is with this curiosity that we have journeyed through the many scientific breakthroughs and innovations. And within each special nook and cranny of countless fields of science, from flight to evolution, from vaccines to cancer treatments, there have been multitudes of discoveries. There is no doubt that the number of innovations will only continue to grow. References Bishop, B., & Edemekong, P. (2023). Choriocarcinoma. StatPearls . Crowley, T., & Kyte, J. (2014). Section 1 - Purification and characterization of ferredoxin-NADP+ reductase from chloroplasts of S. oleracea . In Experiments in the Purification and Characterization of Enzymes (pp. 25–102). Gianfaldoni, S., Gianfaldoni, R., Wollina, U., Lotti, J., Tchernev, G., & Lotti, T. (2017). An overview on radiotherapy: From its history to its current applications in dermatology. Open Access Macedonian Journal of Medical Sciences, 5 (4), 521–525. https://doi.org/10.3889/oamjms.2017.122 Hanoodi, M., & Mittal, M. (2023). Methotrexate. StatPearls . Leavy, O. (2016). The birth of monoclonal antibodies. Nature Immunology, 17 (Suppl 1), S13. https://doi.org/10.1038/ni.3608 MedlinePlus. (2024). Choriocarcinoma. MedlinePlus . https://medlineplus.gov/ency/article/001496.htm#:~:text=Choriocarcinoma%20is%20a%20fast%2Dgrowing,pregnancy%20to%20feed%20the%20fetus Minson, A., Hamad, N., Cheah, C. Y., Tam, C., Blombery, P., Westerman, D., Ritchie, D., Morgan, H., Holzwart, N., Lade, S., Anderson, M. A., Khot, A., Seymour, J. F., Robertson, M., Caldwell, I., Ryland, G., Saghebi, J., Sabahi, Z., Xie, J., Koldej, R., & Dickinson, M. (2024). CAR T cells and time-limited ibrutinib as treatment for relapsed/refractory mantle cell lymphoma: The phase 2 TARMAC study. Blood, 143 (8), 673–684. https://doi.org/10.1182/blood.2023021306 Morena, M., & Gatti, R. (2011). A history of bone marrow transplantation. Haematology/Oncology Clinics, 21 (1), 1–15. Pavlasova, G., & Mraz, M. (2020). The regulation and function of CD20: An "enigma" of B-cell biology and targeted therapy. Haematologica, 105 (6), 1494–1506. https://doi.org/10.3324/haematol.2019.243543 Pierpont, T. M., Limper, C. B., & Richards, K. L. (2018). Past, present, and future of rituximab: The world’s first oncology monoclonal antibody therapy. Frontiers in Oncology, 8 , 163. https://doi.org/10.3389/fonc.2018.00163 Rocheleau, J. (2020). 50 famous firsts from science history. Stacker . https://stacker.com/environment/50-famous-firsts-science-history Wikipedia contributors. (2024, October 6). CAR T cell. In Wikipedia, The Free Encyclopedia . Retrieved October 17, 2024, from https://en.wikipedia.org/w/index.php?title=CAR_T_cell&oldid=1249695600 Previous article Next article apex back to
- From the Editors-in-Chief | OmniSci Magazine
< Back to Issue 4 From the Editors-in-Chief by Caitlin Kane, Rachel Ko, Patrick Grave, Yvette Marris 1 July 2023 Edited by the Committee Illustrated by Gemma van der Hurk Scirocco, summer sun, shimmering on the horizon. Salt-caked channels spiderweb your lips, scored by rivulets of sweat. Shifting, hissing sands sting your legs. You are the explorer, the adventurer, the scientist. A rusted spring, you heave forward, straining for each step, hauling empty waterskins. ----- The lonely deserts of science provide fertile ground for mirages. An optical phenomenon that appears to show lakes in the distance, the mirage has long been a metaphor for foolhardy hopes and desperate quests. The allure of a sparkling oasis just over the horizon, however, is undeniable. The practice of science involves both kinds of stories. Some scientists set a distant goal and reach it — perhaps they are lucky, perhaps they have exactly the right skills. Other scientists yearn to crack a certain problem but never quite get there. In this issue of OmniSci Magazine, we chose to explore this quest for the unknown that may be bold, unlucky, or even foolhardy: chasing the ‘Mirage’. Each article was written entirely by a student, edited by students, and is accompanied by an illustration that was created by a student. We, as a magazine, exist to provide university students a place to develop their science communication skills and share their work. If there’s a piece you enjoy, feel free to leave a comment or send us some feedback – we love to know that our work means something to the wider world. We’d like to thank all our contributors — our writers, designers, editors, and committee — who have each invested countless hours into crafting an issue that we are all incredibly proud of. We’d also like to thank you, our readers; we are incredibly grateful that people want to read student pieces and learn little bits from the work. That’s enough talking from us until next issue. Go and read some fantastic student writing! Previous article Next article back to MIRAGE
- Hidden Worlds: a peek into the nanoscale using helium ion microscopy | OmniSci Magazine
< Back to Issue 2 Hidden Worlds: a peek into the nanoscale using helium ion microscopy How do scientists know what happens at scales smaller than you can see using an optical microscope? One exciting method is the helium ion microscope which can be used to view cells, crystals and specially engineered materials with extreme detail, revealing the beauty that exists at scales too small to imagine! by Erin Grant 10 December 2021 Edited by Jessica Nguy and Hamish Payne Illustrated by Erin Grant The room is white, with three smooth walls and a fourth containing a small sample prep bench and high shelves. In the centre is a desk with three monitors. Next to it, occupying most of the space, is the microscope. Eight feet tall, a few feet wide, resting on an isolated floor surrounded by caution tape; “NO STEP” written in big block letters. Wires protrude from its tiered shape in orderly chaos. It is a clean, technological space; we are ready to explore science. A colleague and I are at the Materials Characterisation and Fabrication Platform of the University of Melbourne to finish off the last steps of a scientific paper I’ve been working on for many years. What I need, as the icing on the cake, is an image. What does my sample look like way down there, at the nanometre scale? Objects that are only nanometres in size are very hard to imagine when we’re used to thinking about metres, centimetres, or maybe even millimetres. We can see those length scales; they are part of our everyday. So, if you’re told that proteins have a diameter of a few nanometres, what does that mean? Well, to be precise, a nanometre is one-billionth of a metre. A human hair, the go-to yardstick for describing small things, has a width between 0.05-0.1 millimetres, which means that if you wanted to slice a hair into nanometre-wide strands you’d end up with nearly 100,000 pieces. Unfortunately, that’s still hard to visualise, but I’ve found that when working with and thinking about scales like this every day, you gain a sort of mental landscape that small things occupy, perhaps not entirely in context, but a space that contains an overall ‘vibe’ of smallness. I first noticed this when I worked in a laboratory that studies the tiny nematode worm C. elegans. These creatures are half a millimetre long, so although they are clearly visible to the naked eye, you need a microscope if you want to use them for science. After looking at these tiny creatures under magnification for many weeks, I came to recognise a feeling almost like being underwater. Upon putting my eyes to the lens, my focus would change from the macroscopic world around me, to one of minutiae. This change in perspective was quite immersive, I almost felt like I was inhabiting that small petri dish too. Working with samples even smaller than that now, I have carried some of that mental landscape with me. It now feels commonplace to imagine tiny systems, such as crystals or molecules which were once foreign. Much of this ability to visualise small things comes from the fact that in many cases, we can actually see them too. Physics has given us many tools with which we can peer into the smallest systems that exist. Helium ion microscopy, which I have come here to carry out, is one such technique. Dr Anders Barlow runs the helium ion microscope (HIM) at this facility. He warmly welcomes me and my colleague into the quiet room and jumps straight into an enthusiastic explanation of the machine – he can tell we’re not just here for some pictures, we want to know the inner workings of the microscope too. The HIM is a bit like the more mature surveyor of minuscule worlds: the electron microscope. While a regular optical microscope uses light to illuminate a sample, the electron microscope uses electrons. When they collide with the sample these electrons can bounce off or lose energy through several mechanisms. The lost energy can go into heat or light, but more usefully, the energy might be transferred to other electrons in the sample, called secondary electrons, ejecting them like a drill removing rocks from a quarry. The secondary electrons can be detected at each point across the sample as the beam is scanned over its surface. If more electrons are detected, then the pixel at that point is brighter compared to areas where there are fewer electrons. This tells you about the topography or composition of the sample at that point on its surface and provides a grayscale image. The HIM works in the same way, but it can generate sharper images because helium ions are heavier than electrons. This is important because the increased resolution of electron and helium ion microscopes is enabled by their quantum mechanical properties - namely the particle’s wavelength. You may have heard about the wave-like nature of light, which is a basic property of quantum mechanics. Particles also have a wavelength, called the de Broglie wavelength, which is inversely proportional to their mass - the heavier the particle, the shorter the wavelength. Having a shorter wavelength allows smaller details to be resolved because of a pesky phenomenon called diffraction. Diffraction occurs when a wave encounters a gap that is of the same or smaller width to its wavelength. When this happens, the wave that emerges on the other side will be spread out. You can think of the features that you want to image as being similar to gaps, so when light, or a particle, interacts with features that are very close together it will spread out, making those features blurry or even invisible. But if you can ensure that the wavelength is smaller than whatever feature you want to see, diffraction will not occur. Interestingly, physicists can actually take advantage of diffraction, and another phenomenon called interference, when they study periodic structures like crystals, but that’s a different article! So, because the de Broglie wavelength is very short for particles with mass, like electrons, an electron microscope can generate images of higher resolution than an optical microscope. Likewise, helium ions are even heavier than electrons because they are composed of one electron, two protons, and two neutrons. This makes them about 7,000 times heavier than a single electron (electrons are very light compared to protons and neutrons!) and consequently the images they can make are very sharp. With our samples ready, lab manager Anders loads my sample into the microscope and begins lowering the pressure in its internal chamber. Having a high vacuum – approximately a billion times lower than atmospheric pressure – is essential because it prevents air from interfering with the helium beam. Making the beam is perhaps the most miraculous part of this technological feat. At the very top of the microscope’s column, there’s a tiny filament shaped like a needle. Not like a needle, in fact, it is the sharpest needle we humans can make. To achieve this, the point is shaped by first extreme heat, and then some extreme voltages until the very tip is composed of only three atoms, reverently referred to as the trimer. Once the trimer has been formed, a high voltage is applied to the needle, resulting in an extreme electric field around the tip. Next, helium gas is introduced into the chamber and individual helium atoms are attracted towards the region of the high electric field. The field is so strong that it strips each helium atom of one electron, ionising it, and these now positively charged ions are repelled from each of the three atoms in the trimer as three corresponding beams. Using sophisticated focusing fields down the length of the column allows Anders to choose only one of the beams for imaging; we are creating a picture using a beam only one atom wide! Generating such a precise beam requires constant maintenance, but once Anders is satisfied with how it looks today, he begins scanning over a large area for what we’ve come to find: tiny proteins stuck to a diamond. In an experimental PhD, you often find yourself answering small incremental questions and today I want to know how well I’ve attached these proteins to my diamond and what the coverage looks like. Other measures have told me that I probably have a lot of them, but the best way to know is to have a look! That’s what Anders does for researchers at the university; he helps us find out whether we have done a good job putting things together or coming up with new techniques. This is something he loves about his job. “I love the exposure I get to many areas of science,” he says, “Imaging of all forms is ubiquitous in research, and the HIM is applicable to most fields, so we see samples from materials science, polymers, nanomaterials, and biomaterials, through to medical technologies and devices, to cell and tissue biology of human, plant and animal origin. I never get tired of seeing what new specimens may come through the lab door.” Unfortunately, the first images we see are very dark and washed out, like a photograph taken in low-light; not many secondary electrons are making it to the detector. To combat this, Anders uses a flood gun to stop charge build up on the surface of the diamond. When the helium ions create secondary electrons, they are ejected from the surface at low speeds. As electrons are negatively charged, the bombarded surface, which now lacks electrons, will become positive and the low energy secondary electrons will be attracted back to the surface instead of making it to the detector. In an electron microscope this is avoided by coating insulators, such as my diamond, with a conductive material like gold. If the surface is conductive, the positive charge that is left behind by the secondary electrons will be offset by electrons from the metallic coating that can flow towards the sudden appearance of positive charges. In this case, the ejected electrons can escape and be detected. However, a coating like this would reduce the resolution of the image; if you want to measure proteins that are twelve nanometres high, but you put a three-nanometre coating over them, you’ll lose a lot of the resolution! To get around this, the HIM uses the flood gun, which lightly sprays the surface with electrons of low energy as the helium beam passes over. This neutralises the surface and lets the secondary electrons escape in the same way as having a conductive layer. Once Anders turns on the flood gun, the contrast increases, allowing us to zoom in on a small region of the diamond, and there they are! Thousands of spherical proteins arranged neatly across the surface, only twelve nanometres in diameter. The sight is spectacular, only one try and we got what we came for. I am three years into a PhD and I’ve become very used to the feeling of disappointment that can accompany new experimental techniques. Things rarely work out the first time around, so to see those little spheres straight away was magical. Dotted across the diamond surface is another, extra, gem. To keep protein nice and happy, you must prepare it in a salty solution. So, when the protein was deposited, some regular table salt, NaCl, came too. We can see this salt in our images as crystals in two distinctive and very beautiful patterns which you can see in the images below. Protein on the surface of my diamond. Each small pale circle is one of these spherical proteins. The first image shows a large creeping pattern, reminiscent of snowflakes or tree roots, which spreads its soft fingers across several hundred nanometres. These crystals have taken on an amorphous pattern, where the crystal structure is broken up rather than being one continuous arrangement of the atoms. The second pattern however, shown in the right image, is what a continuous NaCl crystal looks like. When large enough crystals can form without becoming amorphous they look like precise cubes of various sizes all strewn about. One of my favourite aspects about looking at very small things, is how the patterns you see often mirror those at much larger scales. Look at a fingerprint and you’ll find mountains and valleys, or the roots of a tree and you’ll see a river system. Salt (NaCl) can take on a highly ordered structure shown by the cubic crystals (left) or an amorphous pattern similar in shape to tree roots (right). The astonishing images we get from this single session are all in a day’s work for Anders. He has imaged numerous kinds of cells on all manner of interesting substrates, patterned surfaces covered in needle-like protrusions, and many kinds of man-made materials. Today, there are vials on his prep-bench which, at first glance, look much like jars of hair. However, they are not hair, in fact they are strands of carbon fibre covered in various coatings, awaiting examination. ‘What are your favourite types of samples to look at?’ I want to know. “Cell biology is fascinating,” he says. “We’ve imaged red blood cells, pancreatic cells, stem cells, and various bacterial cells in this microscope. Most often researchers are interested in cell life and death, and the HIM assists by providing high resolution images of the structure and surface topography of the cell membrane.” Recently however, Anders has been helping researchers look at polymer materials for water filtration. “These are hierarchical porous structures, meaning they’re engineered to have pore sizes that vary through the membrane. It is stunning to see the materials at low magnification with large pores, and as we zoom in and in and in, to see new pore sizes become visible at each level, like a material engineered with a fractal quality.” One of the unique things about the HIM, Anders reminds me, is that it’s not just for imaging. Since helium ions are heavy, they carry a higher momentum than electrons. “We leverage the momentum of the ions to actually modify structures too. We can create new surface properties, new devices, new technologies, on a scale that is often too small for any other fabrication technique. This is some of the most exciting work.” If you know anyone who needs some nanoscale drilling done, then the HIM is your instrument! Today’s excursion across the university campus has been thrilling. I got what I came for and I’m excited to find other projects that could benefit from the insight and beautiful images the HIM can provide. Imaging instruments have always fascinated me and I’m looking forward to witnessing how far we will be able to delve into the nanoscale world in the years to come, thanks to the fast pace of engineering and physics research. Previous article back to DISORDER Next article
- Editorial | OmniSci Magazine
< Back to Issue 6 Editorial by Ingrid Sefton & Rachel Ko 28 May 2024 Edited by Committee Illustrated by Louise Cen Science craves fundamentals. Without a true appreciation of the basics, the most complex and elaborate theories will crumble. Both the natural and manmade worlds are meticulously crafted, full to the brim with nuances and modulations, from the laws of physics to the laws of democracy. There is, in our minds, an inextricable desire for classification, organisation, rationalisation. We are in a ruthless pursuit of understanding, striving to decompose the elemental origins of the world around us into fathomable pieces. What drives this urge to discern the building blocks of life? Perhaps, it is the belief that a bottom-up understanding of the laws governing the universe will afford us the ability to reconstruct and create. To know how to defy these laws, rebelling against constraints of the natural world. It is also conceivable that this desire stems from overwhelm. We may never truly understand the expanse of natural forces, cosmological phenomena and ubiquitous elemental power operating beyond any level of mortal control. By examining the microscopic, science becomes tangible. But in isolation, these atoms, elements, fragments of knowledge are just that: fragmented. Scientific understanding exists on a continuum, where the microscopic informs the macroscopic and is contextualised by time, place and culture. It leads one to wonder how exactly “science” should be conceptualised. There is no doubt many people conceive a certain rationality and procedure inherent to scientific progress. Yet, the idea of a specific methodology with the aim to uncover a particular truth is a relatively modern perception of science. Our yearning for understanding and knowledge, on the other hand, is anything but new. Knowledge systems adapt. We observe, we learn, we ask questions. Scientific method and controlled experimentation inform our understanding. But we are also human; inextricably driven by passion and curiosity and irrationality. Should science seek to exclude these values and forces guiding our intrigue? Elemental asks of its contributors to transform their perspective on scientific exploration and consider these different scales of understanding. Creation, destruction, classification and investigation are united in this issue, through the elements of Science. Join us as we dissect our world, from the most natural senses of the human state, to the most mysterious artificial elements of technological intelligence, and beyond. Come explore! Let us see what we can create. Previous article Next article Elemental back to
- Love and Aliens
By Gavin Choong < Back to Issue 3 Love and Aliens By Gavin Choong 10 September 2022 Edited by Khoa-Anh Tran and Niesha Baker Illustrated by Ravon Chew Next Neither Daniel Love nor Brendan Thoms were Australian citizens, but they were both recognised as First Nations Australians by law. Under legislation, “aliens” who commit crimes with a sentence of over a year may be removed from the country. (1) Due to their non-citizenship, the then Minister for Home Affairs Peter Dutton classified these men as aliens and tried to deport them after they were convicted of serious crimes. This attempt failed. The High Court of Australia ruled, in the hotly contested landmark decision of Love v Commonwealth, that Indigenous Australians could not be considered aliens under Australian law because of the “spiritual connection” they hold with the lands and waters of the country we live in. (1) Effectively, this barred the deportation of Love and Thoms but also sent astronomical ripples through the fabric of our nation’s legal framework. This year, major challenges to the decision made in Love v Commonwealth have arisen. Of the arguments put forward, some protest the judicial activism of the judges – that is, them going above and beyond written law to produce a fairer ruling. For example, many contend the term spiritual connection bears no actual legal meaning. However, with a history dating back upwards of seventy-thousand years, two hundred and fifty languages and eight hundred dialects, complex systems of governance, deeply vested religious and spiritual beliefs, and a profound understanding of land, it would be ignorant to argue this rich culture should simply be disregarded in the face of the law. This article adopts a scientific lens and delves into an empirical basis for the spiritual connection Aboriginal Australians share with country, traversing from Dreamtime to spacetime and beyond. THE DREAMING: FROM NOTHING, EVERYTHING From nothing came everything. Nearly fourteen billion years ago, a zero-volume singularity held, tightly, all the energy, space, and time from our current universe. In the moment of creation, temperature and average energies were so extreme all four fundamental forces which shape the universe, as we know it, acted as one. Cosmological inflation followed, allowing for exponential expansion and rapid cooling. Within a picosecond, the four fundamental forces of nature – gravity, electromagnetism, weak interactions, and strong interactions – emerged independently. These forces interacted with matter, resulting in the formation of elementary particles now coined quarks, hadrons, and leptons. For twenty more minutes, elementary particles coupled to form subatomic particles (protons, neutrons) which in turn underwent nuclear fusion to create simple early atoms such as hydrogen and helium. From nothing, came everything. In an eternal present, where there had once been flat and barren ground, Ancestral and Creator spirits emerged from land, sea, and sky to roam the Earth. As they moved, man and nature – mountains, animals, plants, and rivers – were birthed into existence. Once these spirits had finished, instead of disappearing, they transformed into the world they had created, existing in sacred sites such as the night sky, monolithic rocks, and ancient trees. The Dreaming is a First Nations peoples’ understanding of the world and its creation. Importantly, it is an event which cannot be fixed in time – “it was, and is, everywhen,” continuing even today. Countless retellings have caused Dreamtime tales to diverge slightly, leading communities of Aboriginal Australians to identify with different variations of similar stories. (2) These fables refer to natural worldly features and sacred sites, whilst also incorporating favourable values such as patience, humility, and compassion. An example is the tale of the Karatgurk, told by the Wurundjeri people of the Kulin nation, about seven sisters representing what we now consider as the Pleiades star constellation. (3) The Karatgurk These seven sisters once lived by the Yarra River, where Melbourne now stands. They alone possessed the secret of fire, carrying live coals at the end of their digging sticks. (Crow ("trickster, cultural hero, and [another] ancestral being") called the sisters over claiming he had discovered tasty ant larvae. (3) The women began scouring, only to find viscious snakes underneath the dirt which they beat using their digging sticks. As they did so, the live coals flew off and were stolen by Crow who brought fire to mankind. The Karatgurk sisters were swept into the sky, with their glowing fire sticks forming the Pleiades star cluster. In theory, the extreme physical reactions occurring minutes after the Big Bang, paired with hyper-rapid cosmic inflation, should have resulted in a completely homogeneous universe with an even distribution of all existing matter and energy. Cosmological perturbation theory explains, however, that micro-fluctuations in material properties create gravitational wells resulting in the random grouping of matter. These aggregations formed the first stars, quasars, galaxies, and clusters throughout the next billion years. It took, however, another ten billion years for the solar system to form. Similar to Saturn’s planetary rings, the early Sun had its own rotating, circumstellar disc composed of dust, gas, and debris. According to the nebular hypothesis, over millions of years, enough particulates coagulated within the Sun’s spinning disc to form small, primordial planets. Early Earth was a hellish fire-scape as a result of constant meteoric bombardment and extreme volcanic activity. The occasional icy asteroids which collided with Earth deposited large amounts of water, vaporising upon contact – as our planet began to cool, these gaseous deposits condensed into oceans, and molten rock solidified into land mass. In the blink of an eye, early traces of modern humans fluttered into existence at the African Somali Peninsula. They were a nomadic people, travelling westwards and then north through modern day Egypt and into the Middle East. Ancestral Indigenous Australians were amongst the first humans to migrate out of Africa some 62,000 to 75,000 years ago. While other groups travelled in different directions filling up Asia, Europe and the Americas, ancestral Indigenous Australians took advantage of drastically lower sea levels during that time to travel south, as, back then, mainland Australia, Tasmania, and Papua New Guinea formed a single land mass (Sahul) while South-East Asia formed another (Sunda). In spite of this, the wanderers still had to possess the requisite sea-faring skills to traverse almost ninety kilometres of ocean. When the last ice age ended 10,000 years ago, rising waters from melting ice caps covered many of the terrestrial bridges early humans had once journeyed over. This severing allowed Indigenous Australians to foster culture and tradition in their very own passage of time, uninterrupted and independent until a British fleet of eleven ships approached Botany Bay thousands of years later. Significant parts of Australia’s coast were also submerged due to ice age flooding. As coastal Indigenous Australians observed this phenomenon, they recognised its significance through their tales. The Gimuy Walubara Yidinji, traditional custodians of Cairns and the surrounding district, are one of the many groups which reference coastal flooding in their geomythology. Gunya and the Sacred Fish Gunyah, who had lived on Fitzroy Island, went out to hunt for fish one day. Spotting a glimmer in the water, he plunged a spear towards it only to find he had attacked the sacred black stingray. The stingray beat its wing-like fins, causing a great, unending storm. Gunyah fled from the rapidly rising sea and managed to find refuge in a clan living on the cliffs of Cairns. Together, they heated huge rocks in a fire and threw them far into the sea. The pacific was once again pacified, and the Great Barrier Reef created. Isaac Newton proposed, in Principia Mathematica, that the strength of the force of gravity between two celestial bodies would be proportional to both of their masses. At the beginning of the twentieth century, Albert Einstein refined this concept with the theories of Special and General Relativity. His mathematical models suggested time and space were woven into a four-dimensional canvas of spacetime, and the presence of massive objects such as black holes and stars created gravitational wells which distorted spacetime. Within these distortions, bodies closer to large masses would conceive time and space differently than those further away. This unique phenomenon, for example, means astronauts living onboard the International Space Station age fractionally slower relative to us grounded on Earth. Einstein was also able to find that as the velocity of any given body increased to that near the speed of light, it would gain an almost-infinite mass and experience a drastically slowed perception of time relative to their surroundings. These once inconceivable findings had monumental implications in the sphere of theoretical physics, with two examples below. (4, 5) Dark Matter ‘Visible’, baryonic matter humanity is familiar with makes up less than a fifth of the known universe, with a hypothetical ‘dark’, non-baryonic matter comprising the rest. Dark matter lies between and within galaxies, driving baryonic matter to aggregate, forming stars and galaxies. As it cannot be detected using electromagnetic radiation, gravitational lensing provides the strongest proof of its existence. Gravitational lensing occurs when there is an interfering body between us, here on Earth, and a given target. As per Einstein’s relativity, the interfering body has mass which will bend space and therefore distort the image we receive of the target. There exists a mathematically proportional relationship between mass and distortion – the more massive an interfering body, the greater the distortion. Scientists performed calculations but found that the levels of distortion they observed correlated to masses much greater than that of the interfering body. Dark matter accounts for this invisible and undetectable missing mass. String Theory At its core, quantum physics deals with interactions at the atomic and subatomic level. This body of work has borne unusual findings – including that light can act both as a particle and wave, that we may never identify a particle’s position and momentum simultaneously with complete certainty, and that the physical properties of distant entangled particles can fundamentally be linked. On paper, however, there has been great difficulty reconciling quantum physics with relativity theory, as the former deals with interactions which occur in “jumps…with probabilistic rather than definite outcomes”. (4) String theory, however, seeks to settle this tension by proposing the universe is comprised of one-dimensional vibrating strings interacting with one another. This theoretical framework has already bore fascinating fruit – it has been hypothesised that the universe has ten dimensions (nine spatial, one temporal) and during the Big Bang, a “symmetry-breaking event” caused three spatial dimensions to break from the others resulting in an observable three-dimensional universe. (5) On 21 September 1922, astronomers in Goondiwindi, Queensland, used a total solar eclipse to successfully test and prove Einstein’s theory of relativity. Aboriginal Australians present believed they were “trying to catch the Sun in a net”. (6) Western academics were far from the only ones who sought to explain natural phenomena. From the ancient Egyptians to Japanese Shintoists and South American Incas, many civilisations of the past revered the Sun and Moon, having been enthralled by the two celestial bodies. Indigenous Australians were one such people, wanting to understand why the sun rose and set, how moon cycles and ocean tides were related, and what exactly were the rare solar and lunar eclipses. Such occurrences had a mystical property about them, reflected in a rich collection of traditional tales which looked to illuminate these astronomical observations. (7) Walu the Sun-woman Told by the Yolngu people of Arnhem Land, Walu lights a small fire every morning to mark that dawn has arrived. She paints herself with red and yellow pigment with some spilling onto the clouds to create sunrise. Walu lights a bark torch and carries it across the sky from East to West, creating daylight. Upon completing her journey, she extinguishes her torch and travels underground back to the morning camp in the East. While doing so, she provides warmth and fertility to the very Earth surrounding her. Ngalindi the Moon-man Told by the Yolngu people of Arnhem Land, “water fill[s] Ngalindi as he rises, becoming full at high tide”. (6) When full, he becomes gluttonous and decides to kill his sons because they refuse to share their food with him. His wives seek vengeance by chopping off his limbs, causing water to drain out. This is reflected by a waning moon and ebb in the tides. Eventually, Ngalindi dies for three days (New Moon) before rising once again (waxing Moon). Bahloo and Yhi Told often by the Kamilaroi people of northern New South Wales, Yhi (Sun-woman) falls in love with Bahloo (Moon-man) and tries to pursue him across the sky. However, he has no interest in Yhi and refuses her advances. Sometimes, Yhi eclipses Bahloo and tries to kill him in a fit of jealously, but the spirits holding up the sky intervene allowing Bahloo to escape. In 1788, British colonists prescribed the fictitious doctrine of terra nullius which treated land occupied by Indigenous peoples as “territory belonging to no-one,” susceptible to colonisation. (8) It is apparent, however, that Indigenous Australians did and still do belong, having a greater, more unique, and nuanced relationship to our lands and waters than we can ever hope to have. This article shows that as detailed and prescriptive our modern scientific understanding is, First Nations peoples will have an equally if not richer perspective, woven through their stories, languages, and practices. To argue that the spiritual connection Indigenous people share with country is not recognised by law would be wilfully making the same mistake our early settlers made two and a half centuries ago. It would be allowing the continuance of intergenerational trauma and suppression. For those reasons, despite the assertive legal challenges being brought against Love v Commonwealth, its judgement must be upheld. References 1. Love v Commonwealth; Thoms v Commonwealth [2020] HCA 3. 2. Stanner WE. The Dreaming & other essays. Melbourne (AU): Black Inc.; 2011. 3. Creation Stories [Internet]. Victoria: Taungurung Lands & Waters Council [cited 2022 Apr. Available from: https://taungurung.com.au/creation-stories/ 4. Powell CS. Relativity versus quantum mechanics: the battle of the universe [Internet]. The Guardian; 2015 Nov 4 [cited 2022 Apr 17]. Available from: https://www.theguardian.com/news/2015/nov/04/relativity-quantum-mechanics-universe-physicists 5. Wolchover N. String theorists simulate the Big Bang [Internet]. Live Science; 2011 Dec 14 [cited 2022 Apr 17]. Available from: https://www.livescience.com/17454-string-theory-big-bang.html 6. Hamacher DW. On the astronomical knowledge and traditions of Aboriginal Australians [thesis submitted for the degree of Doctor of Philosophy]. [Sydney]: Macquarie University; 2011. 139 p. 7. Mathematics, moon phases, and tides [Internet]. Melbourne: University of Melbourne [cited 2022 Apr 17]. Available from: https://indigenousknowledge.unimelb.edu.au/curriculum/resources/mathematics,-moon-phases,-and-tides 8. Mabo v Queensland (No 2) [1992] HCA 23. Previous article Next article alien back to
- Existing in an Alien World: Navigating Neurodiversity in a System Built for Someone Else
By Hazel Theophania < Back to Issue 3 Existing in an Alien World: Navigating Neurodiversity in a System Built for Someone Else By Hazel Theophania 10 September 2022 Edited by Breana Galea and Ruby Dempsey Illustrated by Janna Dingle Next Content warnings: Ableism, mental illness. Have you ever read something that just makes everything click into place? For me, it was that autism is characterised by a difficulty in forming and understanding ‘second-order representations’1. Let me explain: A ‘first order representation’ is the face value, the direct interpretation of an object or event. A ‘second order representation’ is the underlying meaning, the non-literal association with an object or event. Autistic people struggle with the latter. Allistic (non-autistic) people don’t, and for them it’s intrinsic in a large part of communication – nonverbal cues and gestures, sarcasm, undertones, passive aggression, politeness and more complex events like communication of social hierarchy all take place beneath the veneer of explicit communication. They rely on the ability to interpret another’s actions based on extrapolating their perspective. Rather than being automatic for autistic people, doing so is a learned, active behaviour, and one that is taxing to maintain and use. Reading this explanation was epiphanous for me for two reasons: it concisely explained why I and other autistic people I knew had such trouble navigating and communicating in social interactions, and it clarified why conflict and miscommunication arose so frequently. It contextualised and validated the way I experience and understand the world. Autistic communication is direct, predominantly using first order representation. It doesn’t soften effect or hide meaning with subtext; conversely it has difficulty picking up on inference and implication from others. So many times I have answered questions or followed instructions ‘incorrectly’, because I’ve addressed the words and not the implied meaning underneath. Much of boundary setting and emotional communication in social relationships is implicit - are they ‘acting’ interested? Does it ‘feel’ like they are reciprocating? Can you ‘tell’ that they want to be friends? - inability and difficulty in reading those complex second order representations makes navigating those situations painful and confusing. These struggles and anxieties make it much harder for autistic individuals to make and maintain friendships (3). Sedgewick and Pellicano (3) found that both autistic girls and boys report weaker friendships with more conflict than their neurotypical peers. They experience more victimisation, autistic girls especially, from bullying and other relational aggression, and experience far more insecurity around their friendships. The authors identify “both autistic and neurotypical girls alluded to wanting to fit in, but in different ways.” The neurotypical girls in the study were more concerned with securing a place in the social hierarchy – appearing cool and fitting in with the popular crowd - whether through dating or other means. For the autistic girls it was about finding people who actually accepted them as themselves; fitting in was not about adhering to social expectations, but about finding friends where they didn’t have to. Bury and Hedley (5) found much the same issues in analysing the problems autistic people face in the workplace. While the work itself was no more trouble for autistic individuals than their neurotypical counterparts, navigating the social aspects of a workplace drastically increased the stress and drain on autistic employees. Issues can arise from relative trivialities like dealing with food or birthday wishes, up to serious conflicts that jeopardise their employment. The same communication and relational issues that lead to autistic individuals struggling socially can have more serious consequences when the miscommunication and conflict arise when interacting with an authority, such as a boss or supervisor. Problems stem from unclear instructions, not adhering to unwritten or unspoken rules (social and otherwise), interrupting and socialising at wrong times – everything that relies on being able to determine and pick up on implicit communication. In other words, being autistic has career consequences. Now, having anxiety or depression aren’t intrinsic to being autistic (6). They’re not part of the same dysfunction in development. However, something about being expected to negotiate a minefield of implicit communication that others grasp intuitively leads to an extreme coincidence of autism with both anxiety and depression. The social ostracism and punishment for violating rules you’ve never been taught casts a slight shadow over every interaction. The starkly increased incidences of bullying and victimisation autistic youth go through may also contribute to mental illness. Mayes, Murray and their team7 write: “It is quite possible that youth with ASD (youth with Autism Spectrum Disorder (ASD) ) face considerable challenges during the transition from childhood to adolescence. Social difficulties and awareness of being different from others, especially during the teen years, may lead to problems with anxiety, depression, or hostility.” They reported anxiety in autistic children ranging from 67% to 79% depending on the severity of their traits, and depression affecting between 42% and 54% likewise – in comparison to anxiety occurring in 8% of children and adolescents8 and depression in 5% of children, 17% of adolescents13, and 5% of adults12 overall. Similar figures are reported by Susan White and her colleagues in their meta-analysis “Anxiety in children and adolescents with autism spectrum disorders”. The social deficits autistic individuals endure lead to social anxiety by increasing the likelihood of negative interactions9 and then that anxiety makes interaction with others more difficult, perpetuating the cycle. It’s clear there’s an issue here. Despite no biological link, autistic people suffer far greater rates of depression and anxiety than their neurotypical counterparts. They find friendships more taxing, worrying, and less fulfilling due to impossible unrealistic expectations of allistic communication and understanding. They’re far more likely to be the target of bullying and victimisation than their neurotypical counterparts. Autistic adults suffer in their careers and employment due to a lack of accommodation and recognition. But it doesn’t have to be this way. Growing up neurodivergent shouldn’t be traumatic. Existing as an autistic person shouldn’t be fraught with conflict. I don’t know how we will get to that point. It feels like there are a hundred facets to the issue, each their own problem and needing their own solution. That being said, all solutions need to stem from an understanding of autism and autistic individuals. So, what does it mean to be autistic and how can we navigate those communicative differences? The social aspect of autism arises from a deficit in ‘Theory of Mind’, which is the capacity to interpret and conceptualise another’s thoughts, beliefs, emotions, and intentions (1, 2, 9, 10). Second order representations are the events in which Theory of Mind is used to interpret their meaning – and so a disorder in Theory of Mind development affects the ability of an individual to use and understand those second order representations. Essentially: autistic individuals struggle to interpret and conceptualise other people’s thoughts, beliefs, emotions and intentions. What does that mean for communication? As mentioned earlier, it leads to this a twofold miscommunication between autistic and allistic people, where autistic people don’t see meaning where it is, and allistic people see meaning where it isn’t. This is known as the ‘double empathy problem’ (2). But it isn’t just a communication deficit on the part of the autistic person – the disconnect is due to two entirely different communication styles. Allistic people use second order representations readily and frequently. They’re able to infer other’s perspectives with ease and conversation is based around these assumptions. Gestures, body language and inference are used to convey meaning and assess receptiveness. If the wrong assumptions are made, it can lead to ‘fragmenting’, where there is a cost to getting it wrong and the conversation is disrupted (2). It may not be relationship-damaging every time, but people do pick up on misread cues or intentions and often the only indication a mistake has been made is given through those same implicit communications. The creation of a shared understanding is known as ‘intersubjectivity’ (1, 2). Allistic intersubjectivity is managed through these second order representations, where the shared understanding is outlined and defined implicitly. Autistic people don’t have the same ability to interpret second order representations, so rather than probing or assessing what others have in common, they essentially have to guess. As a result, autistic people can seem appear egotistical or self-interested (2) when they spontaneously talk about an interest of theirs, or suddenly change the topic of conversation. In actuality, they’re trying to find common ground. Because finding that initial mutuality is harder, autistic individuals also place far less of a social cost on getting it wrong (2) and so while intersubjectivity may be harder to initially reach, there’s far less penalty for trying and failing. If these bids for connection are reciprocated, it can creates a “rich intersubjective space for shared understanding” (2). These two elements of autistic communication come together to form a coherent communication style. Heasman writes “The generous assumption of common ground and the low demand for coordination are more than two isolated features; they potentially fit together into a functional system that allows rich forms of social relating” (2). The autistic communication style only appears to be dysfunctional when “[placed] against the cultural backdrop of neurotypical norms and expectations” (2). Another way to look at that is that autistic people don’t need ‘extra’ accommodation or compensation compared to allistic people – allistic people just have all their needs already met. They’re already accommodated for, but it’s such a cultural norm that it’s not even perceived as being so. A metaphor for the two types of communication is that of an allistic person and an autistic person trying to set up fishing rods along a river. The allistic person knows where the fish are - perhaps from reading the movement of the water - and sets up all their poles in that spot. The autistic fisherperson has no such information and sets up their rods all up and down the river to try to find themwhere the fish are. Once they’ve got a few bites and know where the fish are, great! They can move all their rods and set up in whatever spot they’ve found. They just don’t have the same ability to determine where to set up in the first place. They’re not any worse at fishing (i.e., communicating) – they just have trouble knowing where to start. Autism is only a disability in an environment that doesn’t support it. As Bury noted, the only deficits in the workplace are from a lack of social accommodation – autistic individuals don’t struggle with the work itself. In fact, both Bury and Hurley-Hanson and her co-authors report that autistic individuals perform better in a multitude of areas: they have greater problem-solving, pattern-recognition and decision-making skills and a greater tolerance for repetition (5, 11). And that’s great! It’s wonderful to be recognised for the talents you have and the effort you put in. But it shouldn’t have to be justified that autistic people deserve employment and equitable treatment. It’s depressing to have your life and experience boiled down to your marketability and employability. But there is still a disconnect between autistic and allistic people. The perception of autistic people as defective rather than different prevents the integration and acceptance of autistic people into the social space and workforce. To work towards an autism-friendly society, education and awareness of the ways communication and understanding differ in neurodivergent individuals need to be ubiquitous. The hardships autistic people face aren’t because we’re autistic – they’re because everyone else isn’t. Instead of us continuing to assimilate to an allistic worldview, perhaps it’s time to meet us halfway and learn how we operate instead. References Frith, U. (1989) A new look at language and communication in autism. Heasman, B. (2018) Neurodivergent intersubjectivity: Distinctive features of how autistic people create shared understanding. Sedgewick, F., Pellicano, E., (2018) ‘It’s different for girls’: Gender differences in the friendships and conflict of autistic and neurotypical adolescents. Happé, F., Leslie, A. (1989) Autism and ostensive communication: The relevance of metarepresentation Bury, S. et al. (2020) Workplace Social Challenges Experienced by Employees on the Autism Spectrum: An International Exploratory Study Examining Employee and Supervisor Perspectives White, W. et al. (2009) “Anxiety in children and adolescents with autism spectrum disorders.” Mayes, S.D., Calhoun, S.L., Murray, M.J. et al. (2011) Variables Associated with Anxiety and Depression in Children with Autism. Bernstein, G. A., & Borchardt, C. M. (1991). Anxiety disorders in childhood and adolescence: A critical review. Journal of the American Academy of Child and Adolescent Psychiatry Bellini, S. (2004) Social Skill Deficits and Anxiety in High-Functioning Adolescents With Autism Spectrum Disorders. Focus on Autism and Other Developmental Disabilities. Brewer, N, Young, RL & Barnett, E 2017, ‘Measuring Theory of Mind in Adults with Autism Spectrum Disorder’ Hurley-Hanson, A. (2020) ‘Autism in the Workplace’, Palgrave Macmillan Institute of Health Metrics and Evaluation. Global Health Data Exchange (GHDx) Selph, S. (2019) Depression in Children and Adolescents: Evaluation and Treatment Previous article Next article alien back to