
We live in a world where a fungus would probably beat you at Pac-Man. While playing, the average person just follows the dots, but fungi are playing a whole different game. Despite no central brain, they navigate complex mazes, optimise routes, and even communicate across vast networks. To do so, fungi use such efficient strategies that scientists are studying them as a means to improve everything from city planning to biosensors. Nature has been perfecting pathfinding long before we put a quarter in the arcade.
The elongated bodies of fungi, known as mycelia, build vast and complex networks. These structures emerge from natural algorithms - specifically, a process called collision-induced branching (1). In this process, new growth divides into new paths upon meeting an obstacle. When fungal hyphae hit a wall (literally or figuratively), they don’t just stop; they branch out, adapt, and keep moving. Traditional path-finding algorithms like Depth-First Search (DFS) or Breadth-First Search (BFS) methodically crawl through paths, moving step by step without reacting to obstacles (2). Fungi, on the other hand, adjust on the fly, often landing on the most resource-efficient routes way faster. Imagine reaching a junction in Pac-Man and instead of choosing just one path, Pac-Man splits into two, each clone taking a different route to cover more ground. This is exactly why fungal networks often end up looking eerily like optimised transport systems, such as railway lines or power grids! (3)
Some fungi aren’t just clever in how they grow - they can quite literally compute. Certain species, like Basidiomycete fungi, communicate through spikes of electrical activity pulsing through their mycelial networks, processing information in ways surprisingly reminiscent of neural systems (4). What makes them even more intriguing is their hypersensitivity to the world around them. These organisms can detect subtle shifts in their environment - both chemical and physical. It’s like they’ve memorised every path they’ve taken, so when a new pellet appears on the far side of the board, they don’t need to search blindly. They already know the fastest way there, no matter where the original Pac-Man started. Endophytic fungi, fungi that live inside plants without causing harm, have been used to create biosensors - devices that can detect environmental contaminants like pollutants or pesticides (5). When these fungi encounter harmful chemicals, they react, making them perfect for monitoring things like toxins in the environment. Scientists have even developed yeast-based biosensors to specifically detect chemicals like tebuconazole, a common pesticide (6).
Fungi don’t stop at chemistry and computations. It turns out they’re mechanically perceptive too. In one study, oyster fungi incorporated into fungal insoles responded to compressive stress, hinting at applications in wearable tech or even seismic sensing systems (7). Mycelium-based composites also exhibit unique patterns of electrical activity as moisture levels shift, making them promising candidates for humidity-responsive technologies. As if that weren’t enough, some fungi have the incredible ability to glow in the dark, a phenomenon known as bioluminescence. This natural light can be harnessed in special sensors, which use the glow to indicate the presence of specific substances. Essentially, when the fungi detect certain chemicals, they light up, providing an easy way to spot pollutants or toxins (8).
These properties make fungi wildly efficient. No random turns, no wasted loops, just constant feedback powering smarter decisions. They know where they’ve been, sense what’s coming, and find the fastest route every time. It’s Pac-Man with a built-in optimisation engine, and that’s exactly how fungi behave in the wild. How well do you think you’d do against this version of Pac-Man? Probably not great. Let’s face it: they’re not only outsmarting us, they’re doing it with no brain at all.
As we look toward smarter and more sustainable technologies, fungi might just be the key to a new era of bio-inspired computing and environmental monitoring. Researchers are already tapping into their natural brilliance to create more efficient systems for everything from biosensors to sustainable materials. The next time you see a mushroom, remember: it’s not just a fungus, it’s part of a vast, intelligent network playing the ultimate game of survival, one optimised move at a time. In a world where efficiency and adaptability are paramount, fungi might just be the unsung heroes we need to help us solve some of the biggest challenges ahead.
References
Asenova E, Lin HY, Fu E, Nicolau DV, Nicolau DV. Optimal Fungal Space Searching Algorithms. IEEE Trans Nanobioscience. 2016 Oct;15(7):613-618. doi: 10.1109/TNB.2016.2567098. Epub 2016 May 13. PMID: 27187968.
Hanson KL, Nicolau DV Jr, Filipponi L, Wang L, Lee AP, Nicolau DV. Fungi use efficient algorithms for the exploration of microfluidic networks. Small. 2006 Oct;2(10):1212-20. doi: 10.1002/smll.200600105. PMID: 17193591.
Asenova E, Fu E, Nicolau Jr DV, Lin HY, Nicolau DV. Space searching algorithms used by fungi. InBICT'15: Proceedings of the 9th EAI International Conference on Bio-inspired Information and Communications Technologies (formerly BIONETICS) 2016. European Alliance for Innovation.
Adamatzky A. Towards fungal computers. Interface focus. 2018 Dec 6;8(6):20180029.
Khanam Z, Gupta S, Verma A. Endophytic fungi-based biosensors for environmental contaminants-A perspective. South African Journal of Botany. 2020 Nov 1;134:401-6.
Mendes F, Miranda E, Amaral L, Carvalho C, Castro BB, Sousa MJ, Chaves SR. Novel yeast-based biosensor for environmental monitoring of tebuconazole. Applied Microbiology and Biotechnology. 2024 Dec;108(1):10.
Nikolaidou A, Phillips N, Tsompanas MA, Adamatzky A. Reactive fungal insoles. InFungal Machines: Sensing and Computing with Fungi 2023 Sep 17 (pp. 131-147). Cham: Springer Nature Switzerland.
Singh S, Kumar V, Dhanjal DS, Thotapalli S, Singh J. Importance and recent aspects of fungal-based biosensors. InNew and Future Developments in Microbial Biotechnology and Bioengineering 2020 Jan 1 (pp. 301-309). Elsevier.