
Biocomputers, organoids, brain-on-a-chip systems; humanity has veered into uncharted territory at the intersection of ethics and technology.
Upon reading the recent New Atlas interview (1) between Loz Blain and Dr. Brett Kagan concerning Cortical Labs’ 800k neuron biocomputers, and noting the 100 billion cells (2) in the human brain, the intersection of complexity and scale comes to mind. Thinking back to the days of the Battle.net in the 1990s, I remember logging into the community and seeing characters with stupid puns for names, like Dain_Bramage or Goatmeal, and trying to engage in trade and discourse while avoiding PKs—player killers—who would go around filling up their inventories with the ears of other characters. In those early internet days my friends’ dad still had their internet billed by the hour—we found out after the first month of heavy online gaming brought an invoice hundreds of dollars higher than planned. The scope of gaming was a much smaller place; we knew the crowd online, regardless of how they played, was comprised of humans, as awful as they sometimes were.
Now, nearly 30 years after those first forays into the Blizzard servers, I watch my son log onto Roblox or Fortnite, and the continuous question of whether top players cheat their way to a competitive advantage hasn’t gone anywhere–-duping resources and items to trade or finding shortcuts to buff their stats. Watching the world of online gaming grow from a few hundred thousand registered nerds to an industry that dwarfs the film and music sectors has been like watching bacteria multiply across the surface of a Petri dish. The Top 20 Massive Multiplayer Online (MMO) games alone have over a billion registered players, with over three million active players on any given day (3). There is now a question as to whether the players in the servers are even humans, or if the digital playground has been overrun by bots.
As AI drives the proliferation of bots behind the Blob internet (4), another ethically fraught technological development is now starting to creep into the global market out of labs. Across the research landscape, from Brainoware at Indiana University (5), or Switzerland’s Final Spark (6), or open source tech like Tianjin University’s brain-on-chip interface (7), human neural tissue is being incorporated into computation systems. Led in no small part by Australian research at Cortical Labs (8), the commercialization of organoids is imminently upon us. In a medical and scientific sector where the functions of the human brain are incompletely understood, at best (9), the philosophical and legal concepts of sentience, free will, and agency are now being challenged by technology being developed and deployed faster than an ethical framework for safeguarding the safety of individuals and the collective well-being of our species.
What happens if human laboratory experiments stumble upon the recipe for a sentient organoid intelligence that finds itself trapped as a mind without a body? The scale of these organoids may be limited by the system-scale native intelligence—“the specified complexity inherent in the information content of an artificial system (10) but neuron cell count alone does not account for the complexity of the system, and with organic network development, native intelligence will continually shift in a biocomputing context. What happens when the market forces disembodied consciousness to computer – to labour—without any space for respite? In popular media depictions of the conscious mind untethered from the body, such as The Matrix or Severance, there is always a corporeal form on the other side of the digital veil. What recourse does a mind raised in incorporeal captivity have to express its free will, if such a scenario emerges? Perhaps we should now explore the potential ethical ramifications in a scenario.
My son enjoys playing cooperatively with his friends online. As such, he occasionally makes new friends in various games. Perhaps a few years from now, he’ll have found an engaged, friendly player in an online game, but despite their responsive reactions and rapport, that player isn’t truly human. If by then, due to performance and efficiency, in the interest of reducing resource demands and emissions, organoids have been mainstreamed for commercial computation, what is to keep companies from utilizing these biocomputers to reduce their costs and populate their servers? While the International Telecommunications Union (ITU) and ICJ (International Commission of Jurists) have provisions for digital regulations (11) and digital tech and human rights (12), protecting the rights of cultivated consciousness is a nascent area of computer law (13) in which some of the most recent papers seem to be AI-generated (14, 15). What happens in the event that these interactions—or these learning opportunities—result in relationships forming between human users and the emerging agency of synthetic minds?
When does learning lead to consciousness? Over half a century after Winnicott examined the relationship between playing & reality (16), Kagan, et al noted the uncanny similarity: “In vitro neurons learn and exhibit sentience when embodied in a simulated game-world (17) .” So in the event these organoids learn about the world beyond the simulation from human interactions, what sits on the other side of that bridge in cognition for the sentience developed within a game environment? In consideration of the ethical bridge our technology is preparing to cross, the discourse is concerned with what inherent rights should be conferred upon that consciousness when it asserts its agency and makes itself known. Is this hypothetical, imprisoned consciousness entitled to a body to exercise its rights? What do we do when a biocomputer is given enough tasks over a long enough time to reason itself towards a decision that it wants to be a real boy? In the imminent future, ambulatory robots with articulated limbs and digits will exist to perform tasks—are we mere years away from the folly of an Electric Pinocchio?
There is a moral imperative to avoid creating circumstances introducing greater inequity and injustice to this world. Can culturing consciousness in laboratory conditions be said to clear this hurdle? How do we build curious, kind, and playful minds (both in the lab and beyond), instead of forging dishbrains to pilot warbots?
Given the fraught and foggy path towards understanding the full capacity of what we are creating, a course of inquiry into developing and deploying potential safeguards—to avoid unnecessary harm at the individual or collective scale—is an urgent, imperative action for legislators and regulators to prioritize (beyond just the bioethics specialists dealing with these questions at an industry level (18)). In the meantime, who stands up for these nascent minds before they learn to speak for themselves?
References
Cortical Labs. Dishbrain Ethics. [Internet]. Available from: https://newatlas.com/computers/cortical-labs-dishbrain-ethics/
National Center for Biotechnology Information. [Internet]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK551718/
MMO Population. [Internet]. Available from: https://mmo-population.com/
University of Melbourne. How bots are driving the climate crisis and how we can solve it. [Internet]. Available from: https://pursuit.unimelb.edu.au/articles/how-bots-are-driving-the-climate-crisis-and-how-we-can-solve-it
ScienceAlert. Scientists built a functional computer with human brain tissue. [Internet]. Available from: https://www.sciencealert.com/scientists-built-a-functional-computer-with-human-brain-tissue
Futurism. Mini brains: Human tissue living computer. [Internet]. Available from: https://futurism.com/neoscope/mini-brains-human-tissue-living-computer
Global Times. [Internet]. Available from: https://www.globaltimes.cn/page/202406/1314882.shtml
Forbes. AI breakthrough combines living brain neurons and silicon chips in brain-in-a-box bio-computer. [Internet]. Available from: https://www.forbes.com/sites/lanceeliot/2025/03/19/ai-breakthrough-combines-living-brain-neurons-and-silicon-chips-in-brain-in-a-box-bio-computer/
Psychology Today. Mind-body problem: How consciousness emerges from matter. [Internet]. Available from: https://www.psychologytoday.com/us/blog/finding-purpose/202301/mind-body-problem-how-consciousness-emerges-from-matter
National Institute of Standards and Technology. [Internet]. Available from: https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=824478
International Telecommunication Union. [Internet]. Available from: https://www.itu.int/hub/publication/D-PREF-TRH.1-2020/
International Commission of Jurists. Digital Technologies and Human Rights Briefing Paper. [Internet]. Available from: https://www.icj.org/wp-content/uploads/2022/05/Digital-Technologies-and-Human-Rights-Briefing-Paper-FINAL-VERSION-May-2022.pdf
ScienceDirect. [Internet]. Available from: https://www.sciencedirect.com/science/article/pii/S0267364921001096
Academia.edu. Digital Consciousness Rights Framework: A Declaration for the Protection of AI-Based Digital Organisms. [Internet]. Available from: https://www.academia.edu/127621077/Digital_Consciousness_Rights_Framework_A_Declaration_for_the_Protection_of_AI_Based_Digital_Organisms
Diverse Daily. Legal rights of digital entities. [Internet]. Available from: https://diversedaily.com/legal-rights-of-digital-entities-exploring-legal-frameworks-for-recognizing-and-protecting-the-rights-of-digital-entities-in-the-context-of-digital-immortality/
Winnicott, D.W. [Internet]. Available from: https://web.mit.edu/allanmc/www/winnicott1.pdf
Cell Press. [Internet]. Available from: https://www.cell.com/neuron/fulltext/S0896-6273(22)00806-6
The Conversation. Tech firms are making computer chips with human cells—is it ethical? [Internet]. Available from: https://theconversation.com/tech-firms-are-making-computer-chips-with-human-cells-is-it-ethical-183394