top of page
Fearless Hue_edited_edited_edited_edited_edited.jpg

Timeless Titans: Billionaires defying death

by Holly McNaughton

22 October 2024

edited by Arwen Nguyen-Ngo

illustrated by Esme MacGillivray

WICKED-Issue 5 Cover-Aisyah MS.png

Humans are destined to face an unavoidable end, but what if we weren't? What if humans could push the boundaries of death and become "un-ageable"? What would be the consequences if the world's top apex predators became immortal? The concept of anti-ageing and the quest for eternal life is not new. Cleopatra supposedly bathed in donkeys’ milk to reduce wrinkles. The first emperor of the Qin dynasty (221-206 B.C.), tried to achieve immortality by taking pills. Unfortunately for him, the key ingredient was the highly toxic substance—mercury. In 16th century France, members of the nobility would drink gold to preserve youthful looks. Much like in the past, today’s leading figures in the anti-ageing field are those with power and wealth. Today, the same obsessive quest for youth persists, but now it is backed by cutting-edge science and more importantly, staggering wealth. This article delves into the latest anti-ageing trends—pills, specialised diets, and more—championed by modern-day billionaires. We’ll explore the innovations they fund, and more provocatively, what it means for humanity when death is no longer inevitable.


Anti-ageing pills

The first “key” to anti-ageing is metformin, which dates to the1920s and was first discovered in the medicinal herb Galega officinalis. It lowers blood sugar levels and is taken as a popular treatment for type 2 diabetes (Bailey, 2017). Metformin works by tricking your body into thinking there is not enough energy, lowering blood glucose levels, and helping the insulin your body makes to work better. In a 2014 clinical study, patients with type 2 diabetes initiated with metformin had longer survivals than non-diabetics who did not receive the drug (Bannister et al. 2014).  Although this is a correlation, not causation, some studies state Metformin has increased lifespan in mice (Martin-Montalvo et al., 2013).


While we are anticipating the results of a trial on the effects on humans, and particularly the effects on non-diabetic lifespan, some are already convinced by the results from preliminary studies, such as Byran Johnson. Johnson is a self-proclaimed Professional Rejuvenation Athlete and founder of Project Blueprint. The Blueprint protocol is an extensive regimen of exercise, health tests, supplements, and a strict diet, to reverse biological age. Bryan has been following the protocol since 2021 and has successfully slowed down his rate of ageing to 0.76, meaning that for every year, Bryan is only ageing 277 days. Luckily, it only costs him 2 million a year.  As part of the protocol, Bryan takes several prescription drugs daily, including metformin twice a day and rapamycin.


Rapamycin is another promising “key” anti-ageing drug that works as a mTOR inhibitor. mTOR is a key component in cell growth, proliferation and survival. By inhibiting mTOR, cell growth and protein synthesis processes are slowed, thus reducing the chance of pathology (disease and/or injury) of cells and tissues. It has been shown to extend the lifespan of mice, yeast, worms and fruit flies (Harrison et al., 2009) and in 2018, elderly humans given rapamycin showed promising results with improvement in immune function and decreased infection rates (Mannick et al., 2018), which could ultimately lead to longer lifespans.


Young blood transfusion

Throughout history, blood has been a popular anti-ageing remedy. In the 15th century, Pope Innocent VIII drank the blood of three young boys, to heal his ailments (Scott & DeFrancesco, 2015). It did not work. The term “Young Blood transfusion” is now used to refer to the practice of transfusing blood from a young person into an older one to tackle age-related diseases. The rationale comes from parabiosis experiments. Parabiosis is the anatomical and physiological union of two organisms, and in the 1950s it was performed on two mice, surgically stitched together. A month after the procedure, the older mice showed rejuvenation (Conboy et al., 2005). In 2017, a new startup called Ambrosia emerged offering transfusion from young people at $8,000 a session. According to the U.S Food and Drug Administration, there were no clinical benefits of this treatment, and it was shortly shut down. PayPal founder Peter Thiel believes he will live to be 120 years old; a fan of young blood transfusions, he also credits his future success to taking human growth hormones daily and following a strict paleo diet. 


The science of which diet is best for anti-ageing is constantly changing. The paleo diet cuts out sugar, carbohydrates and highly processed food and is praised by celebs, but is not currently supported by science for having anti-aging benefits. Other diets such as intermittent fasting, keto and veganism are all praised for their anti-aging properties, but again the claims are under-researched. However, there is a growing body of evidence that a whole-food, plant-based diet can aid in the prevention, and in some cases reversal, of chronic diseases (Solway et al., 2020). For example, in Loma Linda, California, one of the world's five original blue zones (areas of the world with the healthiest, longest-living populations), the life expectancy is 10 years longer than the average American, which has been linked to the high number of Adventist vegetarians in the community. The key link between all five blue zones is a mostly whole-food, plant-based diet.


Ethical and social implications – consequences of immortal humans

The cure to ageing is still a while away but there is already a growing body of evidence of how we can extend our lifespans, but is that a good idea? The first argument against extending human lifespans is the risk of furthering the gaps in inequality. There is already a 30–40-year life expectancy gap between first-world and third-world countries. As highlighted in this article, it is primarily the wealthy benefiting from advancements in anti-ageing. Although, it is the responsibility of politicians and governments to remove the disparities worldwide. Thus, the question arises – should our focus and resources be directed towards addressing the health crises in developing countries instead?


The second argument is overpopulation. An interesting study that looked at a 100-year projection of population size if no one aged after 60 showed that total population size only increased by 22% or 9 million to 11 million (Gavrilov & Gavrilova, 2010). They also pointed out that many members of society may choose to reject new anti-ageing technologies due to religious reasons, fear of side effects and/or costs. I would also like to point out that the world’s declining birth rates due to increased fertility issues may also mean overpopulation won’t be a near-future issue. An increasing population size does however mean increased demand for finite resources like water. Increases in water demand could cause an increase in civil and international conflicts over existing water supplies. In Australia, water scarcity is already a persistent issue, given the relatively dry and variable climate and an increased population size will see demand rise above our limits.


To conclude, science has not found a cure for mortality, but with the development in age reversal or anti-ageing science, we may see the longevity of life increasing as well as quality of life. There are several ethical and social implications of an “un-ageable” race, but most importantly, developments in the anti-ageing community may allow loved ones to be healthier for longer.


References

AIHW, Australian Institute of Health and Welfare. (2024). Deaths in Australia. Retrieved from 

https://www.aihw.gov.au/reports/life-expectancy-deaths/deaths-in-australia


Bannister, C. A., Holden, S. E., Jenkins-Jones, S., Morgan, C. L., Halcox, J. P.,

Schernthaner, G.,Mukherjee, J., & Currie, C. J. (2014). Can people with type 2 diabetes live longer than those without? A comparison of mortality in people initiated with metformin or sulphonylurea monotherapy and matched, non-diabetic controls. Diabetes Obes Metab, 16(11), 1165-1173. https://doi.org/10.1111/dom.12354


Bailey, C. J. (2017). Metformin: historical overview. Diabetologia, 60(9), 1566-1576.



Conboy, I. M., Conboy, M. J., Wagers, A. J., Girma, E. R., Weissman, I. L., & Rando, T. A.

(2005).  Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature, 433(7027), 760-764. https://doi.org/10.1038/nature03260


Gavrilov, L. A., & Gavrilova, N. S. (2010). Demographic consequences of defeating

aging. Rejuvenation Res, 13(2-3), 329-334. https://doi.org/10.1089/rej.2009.0977

Metformin: historical overview - Diabetologia
doi.org
Metformin: historical overview - Diabetologia
Metformin (dimethylbiguanide) has become the preferred first-line oral blood glucose-lowering agent to manage type 2 diabetes. Its history is linked to Galega officinalis (also known as goat’s rue), a traditional herbal medicine in Europe, found to be rich in guanidine, which, in 1918, was shown to lower blood glucose. Guanidine derivatives, including metformin, were synthesised and some (not metformin) were used to treat diabetes in the 1920s and 1930s but were discontinued due to toxicity and the increased availability of insulin. Metformin was rediscovered in the search for antimalarial agents in the 1940s and, during clinical tests, proved useful to treat influenza when it sometimes lowered blood glucose. This property was pursued by the French physician Jean Sterne, who first reported the use of metformin to treat diabetes in 1957. However, metformin received limited attention as it was less potent than other glucose-lowering biguanides (phenformin and buformin), which were generally discontinued in the late 1970s due to high risk of lactic acidosis. Metformin’s future was precarious, its reputation tarnished by association with other biguanides despite evident differences. The ability of metformin to counter insulin resistance and address adult-onset hyperglycaemia without weight gain or increased risk of hypoglycaemia gradually gathered credence in Europe, and after intensive scrutiny metformin was introduced into the USA in 1995. Long-term cardiovascular benefits of metformin were identified by the UK Prospective Diabetes Study (UKPDS) in 1998, providing a new rationale to adopt metformin as initial therapy to manage hyperglycaemia in type 2 diabetes. Sixty years after its introduction in diabetes treatment, metformin has become the most prescribed glucose-lowering medicine worldwide with the potential for further therapeutic applications.

Harrison, D. E., Strong, R., Sharp, Z. D., Nelson, J. F., Astle, C. M., Flurkey, K., Nadon, N.

L., Wilkinson, J. E., Frenkel, K., Carter, C. S., Pahor, M., Javors, M. A., Fernandez, E., & Miller, R. A. (2009). Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature, 460(7253), 392-395. https://doi.org/10.1038/nature08221


Martin-Montalvo, A., Mercken, E. M., Mitchell, S. J., Palacios, H. H., Mote, P. L., Scheibye-Knudsen, M., Gomes, A. P., Ward, T. M., Minor, R. K., Blouin, M. J., Schwab, M., Pollak, M., Zhang, Y., Yu, Y., Becker, K. G., Bohr, V. A., Ingram, D. K., Sinclair, D. A., Wolf, N. S., . . . de Cabo, R. (2013). Metformin improves healthspan and lifespan in mice. Nat Commun, 4, 2192. https://doi.org/10.1038/ncomms3192


Mannick, J. B., Morris, M., Hockey, H.-U. P., Roma, G., Beibel, M., Kulmatycki, K., Watkins, M., Shavlakadze, T., Zhou, W., Quinn, D., Glass, D. J., & Klickstein, L. B. (2018). TORC1 inhibition enhances immune function and reduces infections in the elderly. Science Translational Medicine, 10(449), eaaq1564. https://doi.org/doi:10.1126/scitranslmed.aaq1564


Scott, C., & DeFrancesco, L. (2015). Selling Long Life. Nature Biotechnology, 33, 28-37.



Solway, J., McBride, M., Haq, F., Abdul, W., & Miller, R. (2020). Diet and Dermatology: The Role of a Whole-food, 


Plant-based Diet in Preventing and Reversing Skin Aging-A Review. J Clin Aesthet Dermatol, 13(5), 38-43.


Poganik, J. R., Zhang, B., Baht, G. S., Tyshkovskiy, A., Deik, A., Kerepesi, C., Yim, S. H.,

Lu, A. T.,Haghani, A., Gong, T., Hedman, A. M., Andolf, E., Pershagen, G., Almqvist, C., Clish, C. B., Horvath, S., White, J. P., & Gladyshev, V. N. (2023). Biological age is increased by stress and restored upon recovery. Cell Metab, 35(5), 807-820.e805. https://doi.org/10.1016/j.cmet.2023.03.015

apex

back to

OmniSci Magazine acknowledges the Traditional Owners and Custodians of the lands on which we live, work, and learn. We pay our respects to their Elders past and present.

Subscribe to the Magazine

Follow Us on Socials

  • Facebook
  • Instagram
  • LinkedIn
UMSU Affiliated Club Logo
bottom of page