top of page

From the Editors-in-Chief

From modelling the spread of COVID-19 to analysing gene sequences, science has its way of providing clarity and order in situations of apparent chaos. Our Editors-in-Chief give their take on Issue 2’s theme of (Dis)Order, in their various fields of study.

Edited by Neisha Baker

Issue 2: December 10, 2021

climate change.PNG

Rainbow cars, erratic robots, and a circuit named Chua – Sophia

In Grade 10, I pressed ‘Play’ on my computer, and was captivated by the turbulent air flowing around my race car, rendering the screen with a rainbow of colours. This was the first time I had encountered a tool called Computational Fluid Dynamics, commonly used to analyse the aerodynamics of systems.

 

Turbulent air is probably the most textbook example of chaos, their motion described by the notorious Navier-Stokes equations. But chaotic systems exist everywhere in the natural world and accounting for them in models is essential to be able to test and improve our engineering designs.

 

But how can we use chaos? In 2001, researchers Akinori Sekiguchi and Yoshihiko Nakamura first suggested applying chaotic systems to path planning of robots. [1] Later on, researchers Christos Volos et al. applied the Arnold chaotic system to two active wheels of a simulated mobile robot, allowing it to completely, and quickly, scan the unknown terrain in an erratic, unpredictable way. [2] This exploration strategy is not new in nature, however, with research suggesting that ants partly use random motion to search areas for food. [3]

 

Finally, can we engineer chaos? In the field of electrical engineering, it turns out that this is pretty simple! Chua’s circuit contains your standard electrical components - just a linear resistor, two capacitors, one inductor, and a special non-linear resistor called “Chua’s diode” [4] , and is able to generate a funky “double-scroll” pattern which never repeats. The applications are just as exotic, ranging from communication systems, brain dynamics simulations and even music composition! It’s apparent that learning to model, imitate and harness chaos is key to engineering for our (dis)orderly world.

Picture1.png

Computer simulation of Chua’s circuit [5]

Picture2.png

Chua’s Circuit diagram [5]

The Chaos in Communication - Maya Salinger

Throughout the animal kingdom, and particularly amongst humans, communication methods are continually evolving for structures to be as efficient as possible. [6] In relation to human languages, there are of course thousands of languages being spoken worldwide everyday. It would not surprise me if you said that it was a daily occurrence for you to hear a conversation in a language you could not even remotely understand. To your untrained ears, these languages’ sounds, vocabulary and intonation patterns would be unfamiliar, with the combination of these structures sounding very chaotic. However, languages are inherently very structured due to their natural inclination towards efficiency. This structure is observed in hundreds of ways, from the patterning of the tiniest units of sounds, known as phonology, to the much larger structure of phrases and sentences, known as syntax. However, each language has its own unique set of structures, thus explaining their diversity and our inability to comprehend unfamiliar languages.

 

Furthermore, structure in communication is not limited to human language. Throughout the animal kingdom, there are many species that consciously order certain movements or sounds to express particular information. For example, honeybees have a refined method of communication called a “waggle dance”. [7] Whilst it appears to you or I that a honeybee’s movements are random, they strategically encode the precise distance and direction of a nearby flower patch. Structured communication can be seen widely throughout the animal kingdom, despite how chaotic it can appear on the surface for those outside the language community.

Our Bodies, in Chaos — Felicity Hu

Like it or not, we are no strangers to disorder. In the changing world around us, chaos seems to be wherever we look: from our unpredictable Melbourne weather to the many phases of disarray brought on by COVID-19. Although we might encounter disorder in our external environment, we also carry around a little chaos of our own, packaged unassumingly within our bodies.

What better example than in our own heads? Our brains have an astonishing number of around 86 billion neurons [8], polarising and depolarizing at different rates [9] The chaos of our neural network, with its many components phasing in and out of firing, its cells cycling through life and death, happens even as you are reading this. From the chaos of our brains, however, comes the clarity and processes we use every day. When preparing a cup of tea for a study break, for example,  the chaos in our brains follows the wandering of our minds as we wait for the water to boil.. Even after we have a steaming cuppa on our table, our ability to learn the wild and wonderful things from our university textbooks arises from the tangle of neurons and signals in our brains.

While we aim to control the chaos in the world around us, sometimes it is worth appreciating the fact that we, too, have chaos in our own minds. And even more astoundingly, that we can derive clarity from it.

Learning to Count - Patrick Grave

I was never very good at counting.

 

As a tiny boy I sat cross-legged, thumbing through the strands of my frayed shoelace, when I finally figured out how to count by twos.

Picture3.jpg

[15]: Ancient Uruk accountancy tokens and protective seal

Until this point in Grade One, I did not know how I did addition; maybe I copied from the kid next to me, or perhaps there was something greater. See, on the list of important human inventions, counting ranks fairly highly. It takes a mysterious instinct, that of ‘more’ and ‘less’,and formalises it, creating order and power.

 

When ancient peoples began using clay tokens with numeric values [10] and writing symbols on tablets [11], they could move beyond the four objects kept in visual memory [11] or the ten kept on fingers. They could track larger quantities: people, livestock, and wealth. [12]

As a 10-year-old, I would tally things on my legs with Sharpie: Tennis serves, laps of the oval, footy goals for the season. Mum was not impressed.

Over time, numbers branched out. Arithmetic was invented. Greek scholars like Archimedes used negative powers to store fractional parts [13]. In the Hindu-Arabic system, the number zero exists, and each digit’s position matters, allowing for efficient computation. This paved the way for banking, finance, and modern industry [14].

 

My friend showed me fractions a year early. With hushed tones and nervous side-glances, he wrote one number over another. They still feel a bit like magic.

 

While modern maths has largely preserved the Hindu-Arabic system, other ways of counting have existed, each tailored to a civilisation’s needs. The Incas kept numerical records using knots in rope as they were less interested in advanced computation [15]. The Maya peoples used a base-20 system. [16]

 

So, these numbers and counting systems are not natural. Instead, they have been imposed on nature by the machine of human progress. Counting tells a rich story of human development and of each civilisation’s place in that rich tapestry.

 

Unlike humanity, I’m still not very good at counting.

Picture4.jpg

[16]: Counting using tally marks on sign at Hanakapiai Beach

To our team and our readers

We’d like to extend a massive thank you to the team behind Issue 2 of OmniSci Magazine! It has been a hectic, but rewarding few months, and we are so grateful for the effort, care and passion that has brought this issue together. We can’t wait to reflect on our journey so far, and bring more science to our readers in 2022.

Illustration by Jess Nguyen: an interpretation of Dis(Order) in Climate Change

References:

1. Nakamura, Yoshihiko, and Akinori Sekiguchi. “The Chaotic Mobile Robot.” IEEE Transactions on Robotics and Automation 17, no.6 (Dec 2001): 1-3. http://projectsweb.cs.washington.edu/research/projects/multimedia5/JiaWu/review/Cite1.pdf

 

2. Volos, Christos, Nikolaos Doukas, Ioannis Kyprianidis, Ioannis Stouboulos and Theodoros Kostis, Chaotic Autonomous Mobile Robot for Military Missions (Rhodes Island, Proceedings of the 17th International Conference on Communications, 2013), 1-6,

 

3. Garnier, Simon, Maud Combe, Christian Jost, Guy Theraulaz. “Do Ants Need to Estimate the Geometrical Properties of Trail Bifurcations to Find an Efficient Route? A Swarm Robotics Test Bed.” PLoS Computational Biology 9, no.3 (2013): doi: 10.1371/journal.pcbi.1002903

 

4. Gauruv Gandhi, Bharathwaj Muthuswamy, and Tamas Roska, “Chua’s Circuit for High School Students”, Nonlinear Electronics Laboratory, https://inst.eecs.berkeley.edu/~ee129/sp10/handouts/ChuasCircuitForHighSchoolStudents-PREPRINT.pdf

 

5. Shiyu Ji, “ChuaAttractor3D”, published November, 2016, https://en.wikipedia.org/wiki/Chua%27s_circuit#/media/File:ChuaAttractor3D.svg

 

6. Gibson, Edward, Richard Futrell, Steven T. Piandadosi, Isabelle Dautriche, Kyle Mahowald, Leon Bergen, Roger Levy, “How Efficiency Shapes Human Language,” CellPress 23, 5 (2019): 389-407, https://doi.org/10.1016/j.tics.2019.02.003.

 

7. Landgraf, Tim, Raúl Rojas, Hai Nguyen, Fabian Kriegel, Katja Stettin, “Analysis of the Waggle Dance Motion of Honeybees for the Design of a Biomimetic Honeybee Robot,” PLoS ONE 6, 8 (2011): e21354, https://doi.org/10.1371/journal.pone.0021354.

8. Azevedo, Frederico A.C., Ludmila R.B. Carvalho, Lea T. Grinberg, José Marcelo Farfel, Renata E.L. Ferretti, Renata E.P. Leite, Wilson Jacob Filho, Roberto Lent, and Suzana Herculano-Houzel. 2009. "Equal Numbers Of Neuronal And Nonneuronal Cells Make The Human Brain An Isometrically Scaled-Up Primate Brain". The Journal Of Comparative Neurology 513 (5): 532-541. doi:10.1002/cne.21974.

9. Kalat, James. 2018. Biological Psychology. Mason, OH: Cengage.

10. Schmandt-Besserat, Denise. 2008. "Two Precursors Of Writing: Plain And Complex Tokens - Escola Finaly". En.Finaly.Org. http://en.finaly.org/index.php/Two_precursors_of_writing:_plain_and_complex_tokens.

 

11. Schmandt-Besserat, Denise. 1996. How Writing Came About. Austin: University of Texas Press.

 

12. Finn, Emily. 2011. "When Four Is Not Four, But Rather Two Plus Two". MIT News | Massachusetts Institute Of Technology. https://news.mit.edu/2011/miller-memory-0623.

 

13. Law, Steven. 2012. "A Brief History Of Numbers And Counting, Part 1: Mathematics Advanced With Civilization". Deseret News. https://www.deseret.com/2012/8/5/20505112/a-brief-history-of-numbers-and-counting-part-1-mathematics-advanced-with-civilization.

 

14. Archimedes, and Thomas Heath. 2002. The Works Of Archimedes. New York: Dover.

 

15. "The Use Of Hindu-Arabic Numerals Aids Mathematicians And Stimulates Commerce | Encyclopedia.Com". 2021. Encyclopedia.Com. Accessed December 9. https://www.encyclopedia.com/science/encyclopedias-almanacs-transcripts-and-maps/use-hindu-arabic-numerals-aids-mathematicians-and-stimulates-commerce.

 

16. Bidwell, James K. 1967. "Mayan Arithmetic". The Mathematics Teacher 60 (7): 762-768. doi:10.5951/mt.60.7.0762.

 

17. Nguyen, Marie-Lan. 2009. Accountancy Clay Envelope Louvre Sb1932.Jpg. Image. https://commons.wikimedia.org/wiki/File:Accountancy_clay_envelope_Louvre_Sb1932.jpg.

 

18. War, God of. 2010. Hanakapiai Beach Warning Sign Only. Image. https://commons.wikimedia.org/wiki/File:Hanakapiai_Beach_Warning_Sign_Only.jpg.

bottom of page