top of page

How to use a time machine

By Sabine Elias

Whilst time travel is thought to be nothing more than science fiction, the very laws of physics point to its possibility. Physicists have long sought the answer to such a phenomenon using knowledge from rockets to generating wormholes.  

Edited by Niesha Baker

Issue 2: December 10, 2021

Possibility of Time Travel Cover.PNG

Illustration by Quynh Anh Nguyen

So you have just entered the TARDIS machine and are trying to work out how to use it to travel to the past to re-write the present and save the future? Well, look no further because you have come to right place. In this article, I will be describing how to jumpstart your time traveling vehicle and by the end, you will be proficient in navigating your way through the universe and evading time. Do be warned however, that batteries are not included and the simulation may crash at times. Now, you are probably wishing that you could travel back in time to have not clicked this article and saved yourself these two minutes of life that you will never get back. But is time travel really a possibility?

 

We often think about the world as a state of order. Social and political constructs generally keep society running in a systematic manner. But what if I told you the entire universe came to exist from disorder? Before we get to logistics, let me introduce you to a little something known as ‘entropy’. Entropy describes the state of disorder (1). Take a closed bottle containing gas. Once you open this bottle, the gas will diffuse out into the open space with no way to retrieve it in the exact same state back inside the bottle. In essence, this gas has become ‘disordered’ and thus its entropy has increased. For years, scientists have understood that the entropy of the universe is always increasing, which means that stars, planets and galaxies are in constant motion away from each other (1).

 

If we wanted to travel back in time, we would essentially have to reverse every single chemical reaction that has occurred from the point in time we currently stand in, to the point in time that we wish to travel to (2). This is theoretically impossible as we would be violating the laws of physics and decreasing the entropy of the universe but we still do not know if it is physically impossible. Let Brain Cox explain:

Another problem with time travel would be altering events of the past. Take the Grandfather Paradox: if someone travelled back in time to kill their ancestor, then the possibility of their existence in the future would be zero (3). Thus, they would have been unable to time travel to begin with to have killed their ancestor. This issue of causality is expanded upon through the Novikov Self-Consistency Principle (4). This states that if an event causes a paradox or changes the past, the possibility of this event occurring would be impossible. However, this principle is not widely accepted by time travel enthusiasts.

 

Now, whilst your TARDIS machine may be nothing but a prop at this point in time, it could still help provide evidence on the possibility of time travel. Take this example: you set up two duplicates of the same clock that read the same time and placed one into a rocket that blasts off into space. The rocket orbits around the Earth and then returns and is compared to the clock that remained on Earth. You would find that less time has passed on the clock that was in the rocket. Why? Because moving clocks run slower than stationary clocks. That is, as you move faster through space, you move slower through time. This is known as Time Dilation (5).

 

An example of time dilation is the comparison of time on the International Space Station (ISS) to the time on Earth. Astronauts who have spent 6 months in the ISS have aged 0.005 seconds less than people on Earth (6). This does not seem like much because the astronauts are not traveling close to the speed of light. To see the effects of time dilation multiply, one would need to be very close to the speed of light. If you were to travel in space at 90 per cent the speed of light, whilst everyone on earth would age by 22 years you would only have aged by 9!

 

Speed is not the only thing that affects how fast we age, gravity also affects our experience of time. A stronger gravitational field means that time travels slower in that field. For instance, your feet age slower than your head considering the slightly smaller gravitational pull on your feet compared to your head. Now take a black hole; we know that black holes have immensely strong gravitational fields where one hour near a black hole would equal approximately 100,000,000 years for a person on earth (7).

 

So what would happen if you travelled through a black hole?

 

No one really knows what occurs inside a black hole but we know trying to enter will likely turn you into spaghetti (8). That being said, we can only observe things that go as far as the event horizon of the black hole, so once something has entered it, we do not know what has happened. Black holes have however, been especially useful in theoretically explaining the possibility of time travel. Placing someone in a strong gravitational field or having them experience motions close to the speed of light would have them experience time slower compared to someone on Earth. This brings us to wormholes. 

 

Einstein’s theory of general relativity predicts the existence of wormholes which would theoretically permit time travel. To travel to a galaxy that is 2.5 million light years away with the fastest rocket on earth would be impossible as it would take longer than a human lifetime. This is where wormholes come to the rescue. A wormhole would provide us with a shortcut to our location of interest. Imagine folding a paper in half and poking a pen through it to represent your route of travel. You are essentially skipping the length of the paper and traveling from one end to the other.

bigQ080208.jpeg

Source: The Independent. (2008). The Big Question: Is time travel possible, and is there any chance (9).

You then situate one mouth of the wormhole in a spacecraft traveling close to the speed of light and the other mouth on Earth. If you then went through the mouth on Earth and travelled through to the space craft, you would be traveling back in time. This is because time would be passing much slower at the other end of the wormhole than where you entered from. However, physicists have not yet developed such advanced technology capable of this, but theoretically speaking, this is a possibility if such technology was developed in the future.

 

Whilst you may have thought that time travel was merely based on science fiction, the laws of physics do not forbid its existence. However, here is some food for thought:

 

“If time travel is possible, where are the tourists from the future?”

Stephen Hawking

Perhaps with time, we may transform this theory into reality. So for the time being, just sit back and enjoy the presence of your TARDIS machine. Perhaps you might even get lost in time from the very thought of time travel.

References:

1. Wehrl, Alfred. “General Properties of Entropy.” Reviews of Modern Physics 50, no. 2 (April 1, 1978): 221–60. https://doi.org/10.1103/revmodphys.50.221.

 

2. BBC. “Brian Cox Explains Why Time Travels in One Direction - Wonders of the Universe - BBC Two.” YouTube, March 10, 2011. https://www.youtube.com/watch?v=uQSoaiubuA0.

 

3. Smith, Nicholas J.J. “Time Travel (Stanford Encyclopedia of Philosophy).” Stanford Encyclopedia of Philosophy, November 14, 2013. https://plato.stanford.edu/entries/time-travel/#GraPar.

 

4. Carlini, A., V.P. Frolov, M.B. Mensky, I.D. Novikov, and H.H. Soleng. “Time machines: The principle of self-consistency as a consequence of the principle of minimal action.” International Journal of Modern Physics, no. 05 (October 1995): 557–80. https://doi.org/10.1142/s0218271895000399.

 

5. The Editors of Encyclopaedia Britannica. “Time Dilation | Explanation, Examples, & Twin Paradox.” In Encyclopædia Britannica, 2019. https://www.britannica.com/science/time-dilation.

 

6. Dickerson, Kelly. “Here’s Why Astronauts Age Slower than the Rest of Us Here on Earth.” Business Insider Australia, August 20, 2015. https://www.businessinsider.com.au/do-astronauts-age-slower-than-people-on-earth-2015-8.

 

7. Gharat, Sarvesh Vikas. “Relativity and Time Dilation.” International Journal for Research in Applied Science and Engineering Technology 7, no. 11 (November 30, 2019): 650–51. https://doi.org/10.22214/ijraset.2019.11103.

 

8. "Death by spaghettification: Scientists record last moments of star devoured by black hole." NewsRx Health & Science, November 1, 2020, 236. Gale Academic OneFile. https://link.gale.com/apps/doc/A639405517/AONE?u=unimelb&sid=bookmark-AONE&xid=6812ee05.

9. “The Big Question: Is Time Travel Possible, and Is There Any Chance.” The Independent, February 8, 2008. https://www.independent.co.uk/news/science/big-question-time-travel-possible-and-there-any-chance-it-will-ever-take-place-779761.html.

bottom of page