top of page

Science in the Age of Politics

Hope, Humanity and the

Starry Night Sky

By Andrew Lim

Can science be a force for good? Could it transcend our divisions when we need it the most? Or is it destined to be a tool for Machiavellian manoeuvres? Traversing everywhere from the Cold-War-era Kremlin to modern Asia, and even up into the void of space, this second feature in the ‘Science in the Age of Politics’ series considers the importance of the stars, scientific diplomacy and blind hope amidst rising global tensions.

Edited by Manfred Cain and Yvette Marris

Hope_humanity_and_the_starry_night_sky.jpg

Illustrated by Ravon Chew

andrew.JPG

Image 1: The Arecibo Observatory looms large over the forests of Puerto Rico

The eerie signal reverberates out over the Caribbean skies, amplified by the telescope below. It oscillates between two odd resonating tones for little more than a couple of minutes, then shuts off. Eminent scholars, government administrators and elected representatives watch in wonderment, their eyes glued open. The forest birds and critters chirp and sing. It is November 16, 1974 – from a little spot in Arecibo, Puerto Rico, Earth is about to pop its head out the door to say ‘hello’. 

Those sing-song tunes, beamed out into space on modulated radio waves, are a binary message designed for some alien civilisation– a snapshot of humanity in 1679 bits. It sounds like the beginning of a bad sci-fi flick: the kind that ends with little green men coming down in UFOs for a cheap-CGI first contact. But it isn’t, and it doesn’t. 

Instead, the legacy of those telescope-amplified sounds – that ‘Arecibo Message’ – has a place in history as a symbol of human cooperation, here on Earth rather than in the stars. The message’s unifying vision imbued the famous ‘pale blue dot’ monologue of its co-creator Carl Sagan; and led to the launch of a multi-year international programme designing its successor message 45 years on, presenting extra-terrestrial communication as a mirror of our earth-bound relations. A unified message symbolizing a unified humanity. 

The previous feature in this series (Discovery, Blue Skies…and Partisan Bickering?) ended with a declaration of nuance: that science in politics matters solely because it transcends partisan bounds with clear analysis. Yet, looking at stories like Arecibo’s, so imbued with human optimism, maybe this cold, logical formulation isn’t enough. Perhaps for all its focus on appropriations bills, initiative funding and flawed infrastructure, that perspective lends insufficient weight to science’s ability to inspire, to cut through the fog of day-to-day policy battles with a beacon of what could yet be. 

But is this talk of hope just ideological posturing – a triumphant humanism gone mad? Or could there be some merit to its romantic vision of humanity speaking with one voice to the stars? Might it possibly be that science really is the key to bridging our divisions?

COOPERATION AMIDST CHAOS

Well, why not begin in the times of Arecibo? After all, the interstellar message came at a key moment in the Cold War. Just a few months before, US President Richard Nixon had made his way to Moscow to meet with General Secretary Leonid Brezhnev, leader of the USSR. The signing of a new arms treaty, a decade-long economic agreement and a friendly state dinner at the Kremlin all

seemed to indicate a world inching away from the edge of nuclear apocalypse. Such pacifist optimism is found readily in the  message’s surrounding documents, with its research proposal speaking glowingly of future messages designed and informed by “international scientific consultations…[similar to] the first Soviet-American conference on communication with extraterrestrial [sic] intelligence.”

Indeed, it seems the spirit of the age. Soon after the Arecibo message’s transmission, the Apollo-Soyuz Test Project would see an American Apollo spacecraft docking with a Soviet Soyuz module. Mission commanders Thomas Stafford and Alexei Leonov conducted experiments, exchanged gifts, and even engaged in the world’s first international space handshake – a symbol of shared peace and prosperity for both superpowers.

andrew 2.JPG

Image 2: Thomas Stafford and Alexei Leonov shake hands on the Apollo-Soyuz mission

Apollo-Soyuz marked an effective end to the US-USSR ‘Space Race’ (discussed in Part I of this series), and would lead to successor programmes, including a series of missions where American space shuttles would send astronauts to the Russian space station Mir, and eventually the building of the 21st-century International Space Station (ISS).  

Science seemed capable of forging cooperation amidst the greatest of disagreements, transcending our human borders and divides. Frank Drake, the designer of the Arecibo Message, was filled with optimism, hoping that his message might herald the beginning of a new age, marked by united scientific discovery and unparalleled human growth. He triumphantly declared to the Cornell Chronicle on the day of its transmission that “the sense that something in the universe is much more clever than we are has preceded almost every important advance in applied technology.

SCIENTIFIC SPHERES OF INTEREST

Yet this rose-tinted vision of science as the great mediator perhaps has a few more cracks in it than its advocates like to admit.  Even at the height of Nixon’s Cold War détente, science was not pure intellectual collaboration. Henry Kissinger, Nixon’s National 

Security Advisor and later Secretary of State, pioneered ‘triangular diplomacy’, the art of playing adversaries off against one another with alternating threats and incentives. In later years, he would declare that “it was always better for [the US] to be closer to either Moscow or Peking than either was to the other”. And as he opened channels of communication with China, it was science that would pave the way for a stronger relationship.

In the Shanghai Communique negotiated on Nixon’s 1972 trip to China, both sides “discussed specific areas in such fields as science [and] technology…in which people-to-people contacts and exchanges would be mutually beneficial [and] undert[ook] to facilitate the further development of [them].” Scientific collaboration (often manipulated by spy agencies from the CIA to the KGB) was the carrot beside the military stick – a central part of building alliances in a world of realpolitik. To Kissinger and his colleagues, the world was to be divided into

andrew 3.JPG

Image 3: US President Richard Nixon shakes hands with CCP Chairman Mao Zedong in China in 1972

spheres of influence, even in times of peace – and science was best used as a way of strengthening and shoring up your own prosperity. It is a realist view of science diplomacy that continues to this day, with US Secretary of State Hillary Clinton noting in 

andrew 4.JPG

Image 4: Chinese Foreign Minister Wang Yi meets with his Cambodian counterpart Prak Sokhonn in September 2021, pledging additional aid and vaccine doses.

2014 that “educational exchanges, cultural tours and scientific collaboration…may garner few headlines, but… [can] influence the next generation of U.S. and [foreign] leaders in a way no other initiative can match”. To both Clinton and Kissinger, science is an instrument of foreign policy, whether deployed overtly in winning over current governments or more subtly in shaping the views of future ones. For them, amidst competing interests and simmering tensions, we ignore science’s soft power at our own peril. 

Just look at China’s distribution over Sinovac COVID-19 vaccines in the pandemic. In October 2020, January 2021 and September 2021, Chinese Foreign Minister Wang Yi went on tours of Southeast Asia, promising vaccine aid while pushing closer connections between China and the rest of Asia. Last year, it was estimated that China had promised a total of over 255 million vaccine doses – a key step in building stronger economic and military ties in an increasingly tense region.  

Indeed, in mid-2021, just as concerns about Chinese vaccine efficacy grew, US President Joe Biden announced “half [a] billion doses with no strings attached…[no] pressure for favours, or potential concessions” from the sidelines of a G7 Summit. Secretary of Defence Lloyd Austin travelled across Southeast Asia. In the the Philippines he renewed a military deal just as a new shipment of vaccines was announced – a clear indicator of the linkage between medical and military diplomacy, something reinforced when Vice President Kamala Harris landed in Singapore later that year to declare the US “an arsenal of safe and effective vaccines for our entire world.” 

Australia is key to vaccine diplomacy too. On his visit here earlier this year, US Secretary of State Antony Blinken made a point of visiting the University of Melbourne’s Biomedical Precinct to talk about COVID-19, declaring on Australian television that our nation was central to “looking 

andrew 5.JPG

Image 5: United States Secretary of State Lloyd J Austin III meets with Philippines President Rodrigo Duterte in July 2021 for negotiations on renewing the Visiting Forces Agreement

andrew 6_edited.jpg

at the problems that afflict our people as well as the opportunities…dealing with COVID…[in] new coalitions [and] new partnerships.” These views are backed up locally too. Sitting down for an exclusive interview with OmniSci Magazine last year, Dr Amanda Caples, Lead Scientist of Victoria, was keen to characterise her work in terms of these developments, reminding us that Victoria had been key to “improving the understanding of the immunology and epidemiology of the virus, developing vaccines and treatments and leading research into the social impact of the pandemic”, and emphasising Australia’s national interest, declaring that “global policymakers understand that a high performing science and research system benefits the broader economy…science and research contribute to jobs and prosperity for all rather than just the few.”  Science, it seems, whether in vaccines, trade or exchanges, just like fifty years ago, is again to be a key tool for grand strategy and national interests. 

Image 6: Dr Amanda Caples, Lead Scientist of Victoria

ARGUMENTS AND ARMS

But perhaps even this might be too optimistic an outlook – for that simmering balance of power occasionally boils over. We need only to look at what happened when the détente of Nixon and Brezhnev was dashed to pieces with the Soviet invasion of Afghanistan in 1979. The policy was roundly condemned as sheer naïveté in the face of wily adversaries, with President Ronald Reagan later describing détente in a radio address as “what a farmer has with his turkey – until Thanksgiving Day”.  

Science was the first target for diplomatic attacks. After the invasion, Senator Robert Dole (R-KS) launched legislation barring the National Science Foundation from funding trips to the USSR. And the push seemed bipartisan, with Representative George Brown Jr. (D-CA-36) proposing a House Joint Resolution enacting an immediate “halt [to] official travel related to scientific and technical cooperation with the Soviet Union”. 

andrew 7.JPG

Image 7: Russia’s cosmonauts board the ISS on 18th March 2022, shortly before Russia ends its participation in the program

Now, as we face war on the European continent, even the ISS – the descendant of Apollo-Soyuz’s seemingly-apolitical scientific endeavours – seems to be falling apart spectacularly. On April 2 this year, Roscosmos, the Russian space agency, announced that it would be ending its participation in the ISS program, demanding a “full and unconditional removal of…sanctions” imposed over the Russian invasion of Ukraine. Earlier in the year, Roscosmos’ Director General Dmitry Rogozin openly suggested on Twitter  that the ISS being without Russian involvement would lead to “an uncontrolled deorbit and fall [of the station] into the United States or Europe”, alluding to “the option of dropping a 500-ton structure [on] India and China.” Rogozin’s threats became even more pronounced as the war continued, with Roscosmos

producing a video depicting Russia’s two astronauts on the station not bringing NASA astronaut Mark Vande Hei back to Earth with them (American astronauts primarily go to and return from space via Russian Soyuz capsules). Shared by Russian state news, its chilling final scenes show the Russian segment of the ISS detaching too, with Vande Hei presumably left to die in space aboard the station. 

Such attacks need not remain rhetorical, either. Scientific advancements have long been tied to weaponry and defence systems, with mathematicians and physicists from John Littlewood to Richard Feynman involved in making bombs and ballistics in times of war. Even Arecibo, that bastion of a united humanity, began life as a Department of Defence initiative detecting Soviet ballistic missiles. Today, the AUKUS defence partnership – one of the most significant Indo-Pacific defence developments in recent memory – centres on sharing nuclear submarine science and technology, promising scientific cooperation regarding “cyber capabilities, artificial intelligence, quantum technologies, and additional undersea capabilities”. Even if induced by factors beyond our control, such weapons-based science is a far cry from the pacifist ideals of the Arecibo message. 

Thus, perhaps this messy reality is more central to our science than we like to admit. From the ISS to Australia’s waters, science still is intertwined with conflict and frequently co-opted by geopolitical actors in times of renewed aggression. Science at its worst is mere weaponry. But at its best, it speaks to something greater. 

HOPE IN THE DARKNESS

In June 1977, the world was far from diplomatically stagnant. From the rumblings of Middle Eastern peace (what became the Camp David Accords) to new hopes of nuclear arms reduction, US President Jimmy Carter had quite the array of diplomatic 

dilemmas to consider. But amidst all that cold politics, he penned a letter to be sent on board the spacecraft Voyager, now the furthest manmade object from our solar system, declaring “We are attempting to survive our time so we may live into yours…This record represents our hope and our determination, and our good will in a vast and awesome universe.” 

And if this magazine has purported to speak to the ‘alien’ – far removed from our human lives - then perhaps we have discovered quite the opposite: that looking out up there is so much about looking in down here. Science presents a way we can look out at the alien and see ourselves – “survive our time…into yours”, finding a path ahead reflected in the inky blackness above. 

We are often constrained by time and circumstance, forced in the face of nefarious actors to compromise our idealism and use science as a mere weapon or tool. Discovery for discovery’s sake is frequently the first casualty when battle lines are drawn and aggression begun, and too often the political pessimism of the scientist can seem overpowering.  

But if the stories of broken détentes, diplomatic realpolitik and weaponised technology have made it all feel inevitable, then perhaps it is worth considering the story we began with, looking up into the night sky and remembering that somewhere amidst the stars is a tiny warble in the electromagnetic spectrum. 

Long after the funds and papers that forged it have faded away, after the people who wrote it have perished, it will continue. In its odd combination of ones and zeroes, it will represent humanity: our contradictions and our fears, our constant foibles and infighting, but also our occasional glimpses of a future beyond them. A signal…a reminder that when the times, the people

ANDREW 8.JPG

Image  8: President Jimmy Carter’s message, sent aboard Voyager, the furthest man-made probe from Earth

and the ideas line up just right, science can be the torchbearer for something greater. 

Something so rare that amidst all the ills of the world, it often seems non-existent, and so powerful that over two millennia ago, Aeschylus himself deemed it the very thing given to humanity by Prometheus to save us from destruction – the ideal that transformed us from mortals fixated on ourselves and our deaths to a civilisation capable of great things.

 

“τυφλὰς…ἐλπίδας”, he called it: blind hope. A handshake in a capsule. A life-saving jab on board a ship. A binary message in a bottle, out among the stars. Fleeting images – not of what we are, but of what we can be: visions of blind hope, that sheer belief that we can grow past our worst violent impulses and reach out into the great beyond. 

Maybe it’s foolish. Maybe it’s naïve. But, on a brisk fall evening, looking out at a sky full of stars, each one more twinkling than the last, it’s easy to stop and imagine…maybe it’s the only thing that matters. 

Andrew Lim is an Editor and Feature Writer with OmniSci Magazine and led the team behind the Australian Finalist Submission to the New Arecibo Message Challenge. 

Image Credits (in order): National Atmospheric and Ionosphere Centre; National Aeronautics and Space Administration; National Archives Nixon White House Photo Office Collection; Kith Serey/Pool via Reuters; Malacanang Presidential Photo via Reuters; The Office of the Lead Scientist of Victoria; AP; National Aeronautics and Space Administration

bottom of page